Menu Close

what-is-the-nth-derivative-of-e-ax-sin-bx-c-




Question Number 47432 by Necxx last updated on 09/Nov/18
  what is the nth derivative of  e^(ax) sin (bx+c)?
$$ \\ $$$${what}\:{is}\:{the}\:{nth}\:{derivative}\:{of} \\ $$$${e}^{{ax}} \mathrm{sin}\:\left({bx}+{c}\right)? \\ $$
Commented by maxmathsup by imad last updated on 09/Nov/18
let f(x)=e^(ax) sin(bx+c) ⇒f(x)=Im(e^(ax)  e^(i(bx+c)) )  =Im( e^(ic)  e^((a+ib)x) ) ⇒f^((n)) (x)=Im((e^(ic)  e^((a+ib)x) )^((n)) ) but  {e^(ic)  e^((a+ib)x) }^((n)) =e^(ic)  { e^((a+ib)x) }^((n))  =e^(ic) (a+ib)^n  e^((a+ib)x)   =e^(ax)  e^(i(bx+c))  r^n  e^(inθ)    with r=(√(a^2 +b^2 ))  cosθ  =(a/( (√(a^2 +b^2 )))) and sinθ =(b/( (√(a^2  +b^2 ))))(⇒  tanθ=(b/a) ⇒θ =arctan((b/a)) ⇒  e^(ax)  e^(i(bx+c))  r^n  e^(inθ)  =r^n  e^(ax)  e^(i(bx+c +nθ))   =r^n e^(ax) {cos(nθ +bx+c)+i sin(nθ +bx+c)} ⇒  f^((n)) (x)= r^n  e^(ax)  sin(nθ +bx+c) with r=(√(a^2 +b^2 )) and θ =arctan((b/a))  ( a≠0)
$${let}\:{f}\left({x}\right)={e}^{{ax}} {sin}\left({bx}+{c}\right)\:\Rightarrow{f}\left({x}\right)={Im}\left({e}^{{ax}} \:{e}^{{i}\left({bx}+{c}\right)} \right) \\ $$$$={Im}\left(\:{e}^{{ic}} \:{e}^{\left({a}+{ib}\right){x}} \right)\:\Rightarrow{f}^{\left({n}\right)} \left({x}\right)={Im}\left(\left({e}^{{ic}} \:{e}^{\left({a}+{ib}\right){x}} \right)^{\left({n}\right)} \right)\:{but} \\ $$$$\left\{{e}^{{ic}} \:{e}^{\left({a}+{ib}\right){x}} \right\}^{\left({n}\right)} ={e}^{{ic}} \:\left\{\:{e}^{\left({a}+{ib}\right){x}} \right\}^{\left({n}\right)} \:={e}^{{ic}} \left({a}+{ib}\right)^{{n}} \:{e}^{\left({a}+{ib}\right){x}} \\ $$$$={e}^{{ax}} \:{e}^{{i}\left({bx}+{c}\right)} \:{r}^{{n}} \:{e}^{{in}\theta} \:\:\:{with}\:{r}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\:{cos}\theta\:\:=\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:{and}\:{sin}\theta\:=\frac{{b}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\left(\Rightarrow\right. \\ $$$${tan}\theta=\frac{{b}}{{a}}\:\Rightarrow\theta\:={arctan}\left(\frac{{b}}{{a}}\right)\:\Rightarrow \\ $$$${e}^{{ax}} \:{e}^{{i}\left({bx}+{c}\right)} \:{r}^{{n}} \:{e}^{{in}\theta} \:={r}^{{n}} \:{e}^{{ax}} \:{e}^{{i}\left({bx}+{c}\:+{n}\theta\right)} \\ $$$$={r}^{{n}} {e}^{{ax}} \left\{{cos}\left({n}\theta\:+{bx}+{c}\right)+{i}\:{sin}\left({n}\theta\:+{bx}+{c}\right)\right\}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\:{r}^{{n}} \:{e}^{{ax}} \:{sin}\left({n}\theta\:+{bx}+{c}\right)\:{with}\:{r}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{and}\:\theta\:={arctan}\left(\frac{{b}}{{a}}\right)\:\:\left(\:{a}\neq\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *