Menu Close

what-is-the-nth-derivative-of-e-ax-sin-bx-c-




Question Number 47432 by Necxx last updated on 09/Nov/18
  what is the nth derivative of  e^(ax) sin (bx+c)?
whatisthenthderivativeofeaxsin(bx+c)?
Commented by maxmathsup by imad last updated on 09/Nov/18
let f(x)=e^(ax) sin(bx+c) ⇒f(x)=Im(e^(ax)  e^(i(bx+c)) )  =Im( e^(ic)  e^((a+ib)x) ) ⇒f^((n)) (x)=Im((e^(ic)  e^((a+ib)x) )^((n)) ) but  {e^(ic)  e^((a+ib)x) }^((n)) =e^(ic)  { e^((a+ib)x) }^((n))  =e^(ic) (a+ib)^n  e^((a+ib)x)   =e^(ax)  e^(i(bx+c))  r^n  e^(inθ)    with r=(√(a^2 +b^2 ))  cosθ  =(a/( (√(a^2 +b^2 )))) and sinθ =(b/( (√(a^2  +b^2 ))))(⇒  tanθ=(b/a) ⇒θ =arctan((b/a)) ⇒  e^(ax)  e^(i(bx+c))  r^n  e^(inθ)  =r^n  e^(ax)  e^(i(bx+c +nθ))   =r^n e^(ax) {cos(nθ +bx+c)+i sin(nθ +bx+c)} ⇒  f^((n)) (x)= r^n  e^(ax)  sin(nθ +bx+c) with r=(√(a^2 +b^2 )) and θ =arctan((b/a))  ( a≠0)
letf(x)=eaxsin(bx+c)f(x)=Im(eaxei(bx+c))=Im(eice(a+ib)x)f(n)(x)=Im((eice(a+ib)x)(n))but{eice(a+ib)x}(n)=eic{e(a+ib)x}(n)=eic(a+ib)ne(a+ib)x=eaxei(bx+c)rneinθwithr=a2+b2cosθ=aa2+b2andsinθ=ba2+b2(tanθ=baθ=arctan(ba)eaxei(bx+c)rneinθ=rneaxei(bx+c+nθ)=rneax{cos(nθ+bx+c)+isin(nθ+bx+c)}f(n)(x)=rneaxsin(nθ+bx+c)withr=a2+b2andθ=arctan(ba)(a0)

Leave a Reply

Your email address will not be published. Required fields are marked *