What-is-the-nth-derivative-of-sinx-in-terms-of-the-sine-function- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 59838 by necx1 last updated on 15/May/19 Whatisthenthderivativeofsinxintermsofthesinefunction? Commented by maxmathsup by imad last updated on 15/May/19 iff(x)=sinx,f(n)(x)=sin(x+nπ2)withn⩾1andf(0)=fletprovethisbyrecurrencewehavef(1)(x)=cos(x)=sin(x+π2)letsupposetheequalitytrueattermn⇒f(n+1)(x)=(f(n)(x))′=(sin(x+nπ2))′=cos(x+nπ2)=sin(x+nπ2+π2)=sin(x+(n+1)π2)theresultisproved. Answered by tanmay last updated on 15/May/19 y=sinxdydx=y1=cosx=sin(π2+x)y2=−sinx=sin(2×π2+x)y3=−cosx=sin(3×π2+x)y4=sinx=sin(4×π2+x)yn=sin(n×π2+x)heren=9y9=sin(9×π2+x) Commented by necx1 last updated on 15/May/19 oh…..Igetitnow.Thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-59835Next Next post: F-x-cos-1-x-cos-1-t-sin-3-u-du-dy-dF-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.