Menu Close

What-is-the-nth-derivative-of-sinx-in-terms-of-the-sine-function-




Question Number 59838 by necx1 last updated on 15/May/19
What is the nth derivative of sinx in  terms of the sine function?
$${What}\:{is}\:{the}\:{nth}\:{derivative}\:{of}\:{sinx}\:{in} \\ $$$${terms}\:{of}\:{the}\:{sine}\:{function}? \\ $$
Commented by maxmathsup by imad last updated on 15/May/19
if f(x)=sinx   ,  f^((n)) (x) =sin(x+((nπ)/2))   with n≥1  and  f^((0)) =f  let prove this by recurrence we have f^((1)) (x)=cos(x) =sin(x+(π/2))  let  suppose the equality true at term n  ⇒f^((n+1)) (x) =(f^((n)) (x))^′   =(sin(x+((nπ)/2)))^′  =cos(x+((nπ)/2)) =sin(x+((nπ)/2) +(π/2)) =sin(x+(((n+1)π)/2))  the result is proved .
$${if}\:{f}\left({x}\right)={sinx}\:\:\:,\:\:{f}^{\left({n}\right)} \left({x}\right)\:={sin}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)\:\:\:{with}\:{n}\geqslant\mathrm{1}\:\:{and}\:\:{f}^{\left(\mathrm{0}\right)} ={f} \\ $$$${let}\:{prove}\:{this}\:{by}\:{recurrence}\:{we}\:{have}\:{f}^{\left(\mathrm{1}\right)} \left({x}\right)={cos}\left({x}\right)\:={sin}\left({x}+\frac{\pi}{\mathrm{2}}\right) \\ $$$${let}\:\:{suppose}\:{the}\:{equality}\:{true}\:{at}\:{term}\:{n}\:\:\Rightarrow{f}^{\left({n}+\mathrm{1}\right)} \left({x}\right)\:=\left({f}^{\left({n}\right)} \left({x}\right)\right)^{'} \\ $$$$=\left({sin}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)\right)^{'} \:={cos}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)\:={sin}\left({x}+\frac{{n}\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}\right)\:={sin}\left({x}+\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right) \\ $$$${the}\:{result}\:{is}\:{proved}\:. \\ $$
Answered by tanmay last updated on 15/May/19
y=sinx  (dy/dx)=y_1 =cosx=sin((π/2)+x)  y_2 =−sinx=sin(2×(π/2)+x)  y_3 =−cosx=sin(3×(π/2)+x)  y_4 =sinx=sin(4×(π/2)+x)  y_n =sin(n×(π/2)+x)  here n=9  y_9 =sin(9×(π/2)+x)
$${y}={sinx} \\ $$$$\frac{{dy}}{{dx}}={y}_{\mathrm{1}} ={cosx}={sin}\left(\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{2}} =−{sinx}={sin}\left(\mathrm{2}×\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{3}} =−{cosx}={sin}\left(\mathrm{3}×\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{4}} ={sinx}={sin}\left(\mathrm{4}×\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{{n}} ={sin}\left({n}×\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$$${here}\:{n}=\mathrm{9} \\ $$$${y}_{\mathrm{9}} ={sin}\left(\mathrm{9}×\frac{\pi}{\mathrm{2}}+{x}\right) \\ $$
Commented by necx1 last updated on 15/May/19
oh..... I get it now. Thanks
$${oh}…..\:{I}\:{get}\:{it}\:{now}.\:{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *