Menu Close

What-is-the-number-value-of-f-log-x-1-x-1-1-3-x-x-for-f-1-a-0-1-b-27-c-81-d-10-e-12-




Question Number 114597 by O Predador last updated on 19/Sep/20
      What  is  the  number  value  of   f[((log((( (√(x  )) −   1 )/(x   −   1)))  ))^(1/3) ]  =  (√((√(x ))   +   x ))  for  f(−1)?        a) 0,1     b) 27     c) 81     d) 10     e) 12
Whatisthenumbervalueoff[log(x1x1)3]=x+xforf(1)?a)0,1b)27c)81d)10e)12
Answered by Olaf last updated on 19/Sep/20
((log((((√x)−1)/(x−1)))))^(1/3)  = −1  log((((√x)−1)/(x−1))) = −1  (((√x)−1)/(x−1)) = 10^(−1)  =(1/(10))  (√x)−1 = (1/(10))(x−1)  x−10(√x)+9 = 0  ((√x)−1)((√x)−9) = 0  (√x) = 1 : impossible  otherwise (((√x)−1)/(x−1)) is not defined  (√x) = 9 ⇒ (√((√x)+x)) = (√(90)) = 3(√(10))  Sorry but I find 3(√(10))  I supposed log is log_(10)  and not ln
log(x1x1)3=1log(x1x1)=1x1x1=101=110x1=110(x1)x10x+9=0(x1)(x9)=0x=1:impossibleotherwisex1x1isnotdefinedx=9x+x=90=310SorrybutIfind310Isupposedlogislog10andnotln
Commented by O Predador last updated on 20/Sep/20
 Thank you!
Thankyou!
Answered by floor(10²Eta[1]) last updated on 20/Sep/20
f(((log((((√x)−1)/(x−1)))))^(1/3) )=(√((√x)+x))  ((log((((√x)−1)/(x−1)))))^(1/3) =−1⇒log((((√x)−1)/(x−1)))=−1  (((√x)−1)/(x−1))=10^(−1) =(1/(10))⇒10(√x)−10=x−1  10(√x)=x+9  100x=x^2 +18x+81  x^2 −82x+81=0  x=((82±80)/2)⇒x=1 or 81⇒x=81 (because x≠1)  x=81⇒  f(−1)=(√((√(81))+81))=(√(90))  now if log is ln the logic is the same and  the answer is (√(e^2 −e))
f(log(x1x1)3)=x+xlog(x1x1)3=1log(x1x1)=1x1x1=101=11010x10=x110x=x+9100x=x2+18x+81x282x+81=0x=82±802x=1or81x=81(becausex1)x=81f(1)=81+81=90nowiflogislnthelogicisthesameandtheanswerise2e
Answered by 1549442205PVT last updated on 20/Sep/20
We need find x>0, x ≠1such that   log(((√x)−1)/(x−1))=−1⇔log(((√x)−1)/(((√x)−1)((√x)+1)))=−1  ⇔log(1/( (√x)+1))=−1⇔−log((√x)+1)=−1  •If logx=log_(10) x then  ⇔log((√x)+1)=1⇒(√x)+1=10  ⇔(√x)=9⇔x=81  ⇒f(−1)=(√(9+81))=(√(90))  •If logx = lnx then (√x)+1=e⇒(√x)=e−1  ⇒x=e^2 −2e+1⇒f(−1)=(√( e^2 −e))  Available answer is false!
Weneedfindx>0,x1suchthatlogx1x1=1logx1(x1)(x+1)=1log1x+1=1log(x+1)=1Iflogx=log10xthenlog(x+1)=1x+1=10x=9x=81f(1)=9+81=90Iflogx=lnxthenx+1=ex=e1x=e22e+1f(1)=e2eAvailableanswerisfalse!

Leave a Reply

Your email address will not be published. Required fields are marked *