Menu Close

what-is-the-particular-integral-of-D-2-6D-5-y-e-5x-




Question Number 91298 by jagoll last updated on 29/Apr/20
what is the particular integral  of (D^2 +6D+5)y = e^(−5x )
$${what}\:{is}\:{the}\:{particular}\:{integral} \\ $$$${of}\:\left({D}^{\mathrm{2}} +\mathrm{6}{D}+\mathrm{5}\right){y}\:=\:{e}^{−\mathrm{5}{x}\:} \: \\ $$
Commented by john santu last updated on 29/Apr/20
Answered by niroj last updated on 29/Apr/20
  PI= (e^(−5x) /(D^2 +6D+5))= (x/(2D+6))e^(−5x)    = ((x.e^(−5x) )/(−10+6))=− ((xe^(−5x) )/4) //.
$$\:\:\mathrm{PI}=\:\frac{\mathrm{e}^{−\mathrm{5x}} }{\mathrm{D}^{\mathrm{2}} +\mathrm{6D}+\mathrm{5}}=\:\frac{\mathrm{x}}{\mathrm{2D}+\mathrm{6}}\mathrm{e}^{−\mathrm{5x}} \\ $$$$\:=\:\frac{\mathrm{x}.\mathrm{e}^{−\mathrm{5x}} }{−\mathrm{10}+\mathrm{6}}=−\:\frac{\mathrm{xe}^{−\mathrm{5x}} }{\mathrm{4}}\://. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *