Menu Close

What-is-the-relationship-between-the-centre-of-gravity-and-the-centre-of-mass-




Question Number 27326 by NECx last updated on 05/Jan/18
What is the relationship between  the centre of gravity and the centre of  mass?
$${What}\:{is}\:{the}\:{relationship}\:{between} \\ $$$${the}\:{centre}\:{of}\:{gravity}\:{and}\:{the}\:{centre}\:{of} \\ $$$${mass}? \\ $$
Answered by prakash jain last updated on 05/Jan/18
Center of gravity and center of mass  is at the same point if gravitational  field is same at all points of the body.    It is different if the gravitation field  varies for example a rod placed  vertifically on earth with height =(R_e /2)  then we cannot assume gavitation  field is same at all points.
$$\mathrm{Center}\:\mathrm{of}\:\mathrm{gravity}\:\mathrm{and}\:\mathrm{center}\:\mathrm{of}\:\mathrm{mass} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{point}\:\mathrm{if}\:\mathrm{gravitational} \\ $$$$\mathrm{field}\:\mathrm{is}\:\mathrm{same}\:\mathrm{at}\:\mathrm{all}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{body}. \\ $$$$ \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{different}\:\mathrm{if}\:\mathrm{the}\:\mathrm{gravitation}\:\mathrm{field} \\ $$$$\mathrm{varies}\:\mathrm{for}\:\mathrm{example}\:\mathrm{a}\:\mathrm{rod}\:\mathrm{placed} \\ $$$$\mathrm{vertifically}\:\mathrm{on}\:\mathrm{earth}\:\mathrm{with}\:\mathrm{height}\:=\frac{\mathrm{R}_{{e}} }{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{assume}\:\mathrm{gavitation} \\ $$$$\mathrm{field}\:\mathrm{is}\:\mathrm{same}\:\mathrm{at}\:\mathrm{all}\:\mathrm{points}. \\ $$
Commented by mrW1 last updated on 06/Jan/18
I try to calculate.  M = mass of earth  R = radius of earth  m = mass of rod (vertically placed)  L = length of rod  x_G =position of CoG  dm=(m/L)dx  F=∫((GMdm)/((R+x)^2 ))=((GMm)/L)∫_0 ^( L) (dx/((R+x)^2 ))  =((GMm)/L)[−(1/(R+x))]_0 ^L   =((GMm)/L)[(1/R)−(1/(R+L))]  =((GMm)/(R(R+L)))  F×x_G =∫((xGMdm)/((R+x)^2 ))=((GMm)/L)∫_0 ^( L) ((xdx)/((R+x)^2 ))  =((GMm)/L)[(R/(R+x))+ln (R+x)]_0 ^L   =((GMm)/L)[(R/(R+L))−1+ln ((R+L)/R)]  =((GMm)/L)[−(L/(R+L))+ln ((R+L)/R)]  ((GMm)/(R(R+L)))×x_G =((GMm)/L)[−(L/(R+L))+ln ((R+L)/R)]  ⇒x_G =((R(R+L))/L)[−(L/(R+L))+ln ((R+L)/R)]  ⇒(x_G /L)=((R(R+L))/L^2 )[−(L/(R+L))+ln ((R+L)/R)]  let λ=(L/R) or L=λR  ⇒(x_G /L)=((R(R+λR))/(λ^2 R^2 ))[−((λR)/(R+λR))+ln ((R+λR)/R)]  ⇒(x_G /L)=(((1+λ))/λ^2 )[−(λ/(1+λ))+ln (1+λ)]  ⇒(x_G /L)=(((1+λ)ln (1+λ)−λ)/λ^2 )=α  ⇒x_G =α L  α is not a constant and α<(1/2)  ⇒x_G <(L/2)  but x_M =(L/2)  it means the CoG lies lower than  the CoM.
$${I}\:{try}\:{to}\:{calculate}. \\ $$$${M}\:=\:{mass}\:{of}\:{earth} \\ $$$${R}\:=\:{radius}\:{of}\:{earth} \\ $$$${m}\:=\:{mass}\:{of}\:{rod}\:\left({vertically}\:{placed}\right) \\ $$$${L}\:=\:{length}\:{of}\:{rod} \\ $$$${x}_{{G}} ={position}\:{of}\:{CoG} \\ $$$${dm}=\frac{{m}}{{L}}{dx} \\ $$$${F}=\int\frac{{GMdm}}{\left({R}+{x}\right)^{\mathrm{2}} }=\frac{{GMm}}{{L}}\int_{\mathrm{0}} ^{\:{L}} \frac{{dx}}{\left({R}+{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{{GMm}}{{L}}\left[−\frac{\mathrm{1}}{{R}+{x}}\right]_{\mathrm{0}} ^{{L}} \\ $$$$=\frac{{GMm}}{{L}}\left[\frac{\mathrm{1}}{{R}}−\frac{\mathrm{1}}{{R}+{L}}\right] \\ $$$$=\frac{{GMm}}{{R}\left({R}+{L}\right)} \\ $$$${F}×{x}_{{G}} =\int\frac{{xGMdm}}{\left({R}+{x}\right)^{\mathrm{2}} }=\frac{{GMm}}{{L}}\int_{\mathrm{0}} ^{\:{L}} \frac{{xdx}}{\left({R}+{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{{GMm}}{{L}}\left[\frac{{R}}{{R}+{x}}+\mathrm{ln}\:\left({R}+{x}\right)\right]_{\mathrm{0}} ^{{L}} \\ $$$$=\frac{{GMm}}{{L}}\left[\frac{{R}}{{R}+{L}}−\mathrm{1}+\mathrm{ln}\:\frac{{R}+{L}}{{R}}\right] \\ $$$$=\frac{{GMm}}{{L}}\left[−\frac{{L}}{{R}+{L}}+\mathrm{ln}\:\frac{{R}+{L}}{{R}}\right] \\ $$$$\frac{{GMm}}{{R}\left({R}+{L}\right)}×{x}_{{G}} =\frac{{GMm}}{{L}}\left[−\frac{{L}}{{R}+{L}}+\mathrm{ln}\:\frac{{R}+{L}}{{R}}\right] \\ $$$$\Rightarrow{x}_{{G}} =\frac{{R}\left({R}+{L}\right)}{{L}}\left[−\frac{{L}}{{R}+{L}}+\mathrm{ln}\:\frac{{R}+{L}}{{R}}\right] \\ $$$$\Rightarrow\frac{{x}_{{G}} }{{L}}=\frac{{R}\left({R}+{L}\right)}{{L}^{\mathrm{2}} }\left[−\frac{{L}}{{R}+{L}}+\mathrm{ln}\:\frac{{R}+{L}}{{R}}\right] \\ $$$${let}\:\lambda=\frac{{L}}{{R}}\:{or}\:{L}=\lambda{R} \\ $$$$\Rightarrow\frac{{x}_{{G}} }{{L}}=\frac{{R}\left({R}+\lambda{R}\right)}{\lambda^{\mathrm{2}} {R}^{\mathrm{2}} }\left[−\frac{\lambda{R}}{{R}+\lambda{R}}+\mathrm{ln}\:\frac{{R}+\lambda{R}}{{R}}\right] \\ $$$$\Rightarrow\frac{{x}_{{G}} }{{L}}=\frac{\left(\mathrm{1}+\lambda\right)}{\lambda^{\mathrm{2}} }\left[−\frac{\lambda}{\mathrm{1}+\lambda}+\mathrm{ln}\:\left(\mathrm{1}+\lambda\right)\right] \\ $$$$\Rightarrow\frac{{x}_{{G}} }{{L}}=\frac{\left(\mathrm{1}+\lambda\right)\mathrm{ln}\:\left(\mathrm{1}+\lambda\right)−\lambda}{\lambda^{\mathrm{2}} }=\alpha \\ $$$$\Rightarrow{x}_{{G}} =\alpha\:{L} \\ $$$$\alpha\:{is}\:{not}\:{a}\:{constant}\:{and}\:\alpha<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{G}} <\frac{{L}}{\mathrm{2}} \\ $$$${but}\:{x}_{{M}} =\frac{{L}}{\mathrm{2}} \\ $$$${it}\:{means}\:{the}\:{CoG}\:{lies}\:{lower}\:{than} \\ $$$${the}\:{CoM}. \\ $$
Commented by NECx last updated on 05/Jan/18
thanks boss
$${thanks}\:{boss} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *