What-is-the-relationship-between-the-centre-of-gravity-and-the-centre-of-mass- Tinku Tara June 4, 2023 Mechanics 0 Comments FacebookTweetPin Question Number 27326 by NECx last updated on 05/Jan/18 Whatistherelationshipbetweenthecentreofgravityandthecentreofmass? Answered by prakash jain last updated on 05/Jan/18 Centerofgravityandcenterofmassisatthesamepointifgravitationalfieldissameatallpointsofthebody.Itisdifferentifthegravitationfieldvariesforexamplearodplacedvertificallyonearthwithheight=Re2thenwecannotassumegavitationfieldissameatallpoints. Commented by mrW1 last updated on 06/Jan/18 Itrytocalculate.M=massofearthR=radiusofearthm=massofrod(verticallyplaced)L=lengthofrodxG=positionofCoGdm=mLdxF=∫GMdm(R+x)2=GMmL∫0Ldx(R+x)2=GMmL[−1R+x]0L=GMmL[1R−1R+L]=GMmR(R+L)F×xG=∫xGMdm(R+x)2=GMmL∫0Lxdx(R+x)2=GMmL[RR+x+ln(R+x)]0L=GMmL[RR+L−1+lnR+LR]=GMmL[−LR+L+lnR+LR]GMmR(R+L)×xG=GMmL[−LR+L+lnR+LR]⇒xG=R(R+L)L[−LR+L+lnR+LR]⇒xGL=R(R+L)L2[−LR+L+lnR+LR]letλ=LRorL=λR⇒xGL=R(R+λR)λ2R2[−λRR+λR+lnR+λRR]⇒xGL=(1+λ)λ2[−λ1+λ+ln(1+λ)]⇒xGL=(1+λ)ln(1+λ)−λλ2=α⇒xG=αLαisnotaconstantandα<12⇒xG<L2butxM=L2itmeanstheCoGlieslowerthantheCoM. Commented by NECx last updated on 05/Jan/18 thanksboss Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-x-2-sin-1-x-dy-y-dx-0-Next Next post: lim-n-x-2n-1-x-x-4n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.