Menu Close

What-is-the-sum-of-the-squares-of-the-roots-of-the-equation-x-2-7-x-5-0-Here-x-denotes-the-greatest-integer-less-than-or-equal-to-x-For-example-3-4-3-and-2-3-3-




Question Number 19409 by Tinkutara last updated on 10/Aug/17
What is the sum of the squares of the  roots of the equation x^2  − 7[x] + 5 = 0?  (Here [x] denotes the greatest integer  less than or equal to x. For example  [3.4] = 3 and [−2.3] = −3.)
Whatisthesumofthesquaresoftherootsoftheequationx27[x]+5=0?(Here[x]denotesthegreatestintegerlessthanorequaltox.Forexample[3.4]=3and[2.3]=3.)
Commented by mrW1 last updated on 11/Aug/17
2+23+30+37=92  is this right?
2+23+30+37=92isthisright?
Answered by mrW1 last updated on 11/Aug/17
f(x)=x^2 −7[x]+5  let x=f+d with 0≤d<1  ⇒f(x)=(f+d)^2 −7f+5=f^2 +(2d−7)f+(d^2 +5)  f(x)≥f^2 −7f+5=g(x)  f(x)<f^2 −5f+6=h(x)  g(x)=f^2 −7f+5=(f−((7−(√(29)))/2))(f−((7+(√(29)))/2))  h(x)=f^2 −5f+6=(f−2)(f−3)  since g(x)≤f(x)<h(x),  solution of f(x)=0:  ((7−(√(29)))/2)≈0.807≤f<2 or  3<f≤((7+(√(29)))/2)≈6.192  ⇒f=1,4,5,6    with x=1+d:  (1+d)^2 −7×1+5=0  ⇒d=(√2)−1  ⇒x=1+(√2)−1=(√2)  with x=4+d:  (4+d)^2 −7×4+5=0  ⇒d=(√(23))−4  ⇒x=4+(√(23))−4=(√(23))  with x=5+d:  (5+d)^2 −7×5+5=0  ⇒d=(√(30))−5  ⇒x=5+(√(30))−5=(√(30))  with x=6+d:  (6+d)^2 −7×6+5=0  ⇒d=(√(37))−6  ⇒x=6+(√(37))−6=(√(37))    all solutions:  (√2), (√(23)), (√(30)), (√(37))  sum of their squares:  2+23+30+37=92
f(x)=x27[x]+5letx=f+dwith0d<1f(x)=(f+d)27f+5=f2+(2d7)f+(d2+5)f(x)f27f+5=g(x)f(x)<f25f+6=h(x)g(x)=f27f+5=(f7292)(f7+292)h(x)=f25f+6=(f2)(f3)sinceg(x)f(x)<h(x),solutionoff(x)=0:72920.807f<2or3<f7+2926.192f=1,4,5,6withx=1+d:(1+d)27×1+5=0d=21x=1+21=2withx=4+d:(4+d)27×4+5=0d=234x=4+234=23withx=5+d:(5+d)27×5+5=0d=305x=5+305=30withx=6+d:(6+d)27×6+5=0d=376x=6+376=37allsolutions:2,23,30,37sumoftheirsquares:2+23+30+37=92
Commented by mrW1 last updated on 11/Aug/17
Commented by Tinkutara last updated on 12/Aug/17
Thank you very much Sir! Awesome!
ThankyouverymuchSir!Awesome!
Answered by ajfour last updated on 12/Aug/17
let x=n+f  let x=[x]+{x}=n+f  then (n+f)^2 +5−7n=0   ⇒ (n+f)^2 +5  is an integer =7n  clearly  0<n<7  and   0≤f<1   x=n+f =(√(7n−5))    ,  f=x−n     for n=1 ,  x=(√2)  ,  f=(√2)−1            n=2 ,  x=3    ,  f=1         so not acceptable;            n=3 ,  x=4  ,   f=1       not acceptable;            n=4 ,  x=(√(23))  , f=(√(23))−4       this is quite alright !            n=5 ,  x=(√(30))  , f=(√(30))−5   and if  n=6 , x=(√(37)) ,  f=(√(37))−6   acceptable then are n=1, 4, 5, 6            Σx^2 =Σ(7n−5)                      = 2+23+30+37                     = 92 .
letx=n+fletx=[x]+{x}=n+fthen(n+f)2+57n=0(n+f)2+5isaninteger=7nclearly0<n<7and0f<1x=n+f=7n5,f=xnforn=1,x=2,f=21n=2,x=3,f=1sonotacceptable;n=3,x=4,f=1notacceptable;n=4,x=23,f=234thisisquitealright!n=5,x=30,f=305andifn=6,x=37,f=376acceptablethenaren=1,4,5,6Σx2=Σ(7n5)=2+23+30+37=92.
Commented by ajfour last updated on 12/Aug/17
   as  (n+f)^2 +5=7n     L.H.S. ≥ 5 ⇒  7n ≥5   so n>0     for n >7  ,    n^2  > 7n                        ⇒  (n+f)^2 +5 >7n      so n < 7  if  (n+f)^2 +5 =7n .
as(n+f)2+5=7nL.H.S.57n5son>0forn>7,n2>7n(n+f)2+5>7nson<7if(n+f)2+5=7n.
Commented by Tinkutara last updated on 12/Aug/17
Thank you very much Sir! Wonderful!
ThankyouverymuchSir!Wonderful!
Commented by ajfour last updated on 12/Aug/17
Commented by ajfour last updated on 12/Aug/17
y=7x ;   y=x^2 +5 ;   y=7[x]
y=7x;y=x2+5;y=7[x]

Leave a Reply

Your email address will not be published. Required fields are marked *