Menu Close

what-is-the-value-of-cos-1-i-and-cos-1-i-




Question Number 35231 by abdo.msup.com last updated on 17/May/18
what is the value of cos(1+i) and  cos(1−i)?
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\left(\mathrm{1}+{i}\right)\:{and} \\ $$$${cos}\left(\mathrm{1}−{i}\right)? \\ $$
Commented by abdo mathsup 649 cc last updated on 17/May/18
we have the formulaes  cos(z)=ch(iz) and  sin(z)=sh(iz) ⇒cos(1+i)=ch(i(1+i))  =ch(−1+i) = ((e^(−1+i)   +e^(1−i) )/2)  =(1/2){  e^(−1) cos(1) +ie^(−1) sin(1) +e cos(1)−iesin(1)}  =(1/2){ (e +e^(−1) )cos(1) +i(e^(−1)  −e)sin(1)}  cos(1−i)=ch(i +1)= ((e^(1+i)  +e^(−1−i) )/2)  = (1/2){  e cos(1) +ie sin(1) +e^(−1) cos(1)−ie^(−1) sin(1)}  =(1/2){ (e +e^(−1) )cos(1) +i( e−e^(−1) )sin(1)}
$${we}\:{have}\:{the}\:{formulaes}\:\:{cos}\left({z}\right)={ch}\left({iz}\right)\:{and} \\ $$$${sin}\left({z}\right)={sh}\left({iz}\right)\:\Rightarrow{cos}\left(\mathrm{1}+{i}\right)={ch}\left({i}\left(\mathrm{1}+{i}\right)\right) \\ $$$$={ch}\left(−\mathrm{1}+{i}\right)\:=\:\frac{{e}^{−\mathrm{1}+{i}} \:\:+{e}^{\mathrm{1}−{i}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)\:+{ie}^{−\mathrm{1}} {sin}\left(\mathrm{1}\right)\:+{e}\:{cos}\left(\mathrm{1}\right)−{iesin}\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left({e}\:+{e}^{−\mathrm{1}} \right){cos}\left(\mathrm{1}\right)\:+{i}\left({e}^{−\mathrm{1}} \:−{e}\right){sin}\left(\mathrm{1}\right)\right\} \\ $$$${cos}\left(\mathrm{1}−{i}\right)={ch}\left({i}\:+\mathrm{1}\right)=\:\frac{{e}^{\mathrm{1}+{i}} \:+{e}^{−\mathrm{1}−{i}} }{\mathrm{2}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:{e}\:{cos}\left(\mathrm{1}\right)\:+{ie}\:{sin}\left(\mathrm{1}\right)\:+{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)−{ie}^{−\mathrm{1}} {sin}\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left({e}\:+{e}^{−\mathrm{1}} \right){cos}\left(\mathrm{1}\right)\:+{i}\left(\:{e}−{e}^{−\mathrm{1}} \right){sin}\left(\mathrm{1}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *