Menu Close

what-is-the-value-of-cos-i-j-with-i-2-1-and-j-e-i-2pi-3-




Question Number 35223 by abdo mathsup 649 cc last updated on 16/May/18
what is the value of cos(i+j) with i^2 =−1 and  j =e^(i((2π)/3))   ?
whatisthevalueofcos(i+j)withi2=1andj=ei2π3?
Answered by sma3l2996 last updated on 17/May/18
cos(i+j)=((e^((i+j)i) +e^(−(i+j)i) )/2)=((e^(−1+ij) +e^(1−ij) )/2)  ij=i×e^(i((2π)/3)) =i((1/2)−i((√3)/2))=((√3)/2)+i(1/2)  cos(i+j)=((e^(−1+((√3)/2)+i(1/2)) +e^(1−((√3)/2)−i(1/2)) )/2)=((e^(((√3)/2)−1) ×e^(i/2) +(e^(−i/2) /e^((√3)/2−1) ))/2)  =(1/(2e^((√3)/2−1) ))(e^((√3)−2) (cos(1/2)+isin(1/2))+cos(1/2)−isin(1/2))  (1/(2e^((√3)/2−1) ))((e^((√3)−2) +1)cos(1/2)+i(e^((√3)−2) −1)sin(1/2))
cos(i+j)=e(i+j)i+e(i+j)i2=e1+ij+e1ij2ij=i×ei2π3=i(12i32)=32+i12cos(i+j)=e1+32+i12+e132i122=e321×ei/2+ei/2e3/212=12e3/21(e32(cos12+isin12)+cos12isin12)12e3/21((e32+1)cos(1/2)+i(e321)sin(1/2))
Commented by abdo imad last updated on 17/May/18
sir Sma3l your method is correct but you have commited  a small error  e^(i((2π)/3))  =−(1/2) +i((√3)/2) !...
sirSma3lyourmethodiscorrectbutyouhavecommitedasmallerrorei2π3=12+i32!

Leave a Reply

Your email address will not be published. Required fields are marked *