Menu Close

what-is-the-value-of-dy-dx-if-y-cot-1-1-sinx-1-sinx-1-sinx-1-sinx-x-0-pi-2-please-give-complete-explanation-that-why-can-we-not-take-sinx-2-cosx-2-2-1-sinx-




Question Number 192758 by vishal1234 last updated on 26/May/23
what is the value of dy/dx if  y = cot^(−1) [(((√(1+sinx))+(√(1−sinx)))/( (√(1+sinx))−(√(1−sinx))))]; x∈(0,(π/2))  please give complete explanation that  why can we not take  [sinx/2−cosx/2]^2  = 1−sinx
whatisthevalueofdy/dxify=cot1[1+sinx+1sinx1+sinx1sinx];x(0,π2)pleasegivecompleteexplanationthatwhycanwenottake[sinx/2cosx/2]2=1sinx
Answered by a.lgnaoui last updated on 26/May/23
for the second question  (sin (x/2)−cos (x/2) )^2 =(sin (x/2))^2 +(cos (x/2))^2                                  −2(sin (x/2))(cos (x/2))                          =  1±2[(sin (x/2))(√(1−(sin (x/2))^2 ))     posons    u=sin (x/2)    z=(sin (x/2)−cos (x/2))^2      { ((z=1+2u(√(1−u^2  ))       (1))),((z=1−2u(√(1−u^2 ))        (2))) :}          1+2u(√(1−u^2 ))   =1+2sin (x/2)cos (x/2)                              =1+sin x  1−2u(√(1−u^2 ))  =1−sin x    ⇒(sin (x/2)−cos (x/2))^2 =1+∣sin x∣       •−(π/2)+2kπ<x<+(π/2)+2kπ     sin x>0     z=1+sin x      •(π/2)+2kπ<x<((3π)/2)+2kπ      sin x<0         z=1−sin x    donc   z  n est  pas toujours  egale  ( 1−sinx)
forthesecondquestion(sinx2cosx2)2=(sinx2)2+(cosx2)22(sinx2)(cosx2)=1±2[(sinx2)1(sinx2)2posonsu=sinx2z=(sinx2cosx2)2{z=1+2u1u2(1)z=12u1u2(2)1+2u1u2=1+2sinx2cosx2=1+sinx12u1u2=1sinx(sinx2cosx2)2=1+sinxπ2+2kπ<x<+π2+2kπsinx>0z=1+sinxπ2+2kπ<x<3π2+2kπsinx<0z=1sinxdoncznestpastoujoursegale(1sinx)
Commented by a.lgnaoui last updated on 26/May/23
     −(π/4)< (x/2)<(π/4)        cas 1              (π/4)<(x/2)<π+(π/4)   cas 2     • sin (x/2)cos (x/2)>0    cas1   ⇒z=1−sin x      •sin (x/2)cos (x/2)<0     cas 2  ⇒  z=1+sin x
π4<x2<π4cas1π4<x2<π+π4cas2sinx2cosx2>0cas1z=1sinxsinx2cosx2<0cas2z=1+sinx
Answered by mahdipoor last updated on 26/May/23
why can not take ?!   take that,  bot pay attention :  (√(1−sinx))=(√((sin(x/2)−cos(x/2))^2 ))=  ∣sin(x/2)−cos(x/2)∣=cos(x/2)−sin(x/2)   at 0<x<(π/2)  and   (√(1+sinx))=cos(x/2)+sin(x/2)  y=cot^(−1) (((cos(x/2))/(sin(x/2))))=cot^(−1) (cot((x/2)))=(x/2)⇒(dy/dx)=(1/2)
whycannottake?!takethat,botpayattention:1sinx=(sinx2cosx2)2=sinx2cosx2∣=cosx2sinx2at0<x<π2and1+sinx=cosx2+sinx2y=cot1(cosx2sinx2)=cot1(cot(x2))=x2dydx=12
Answered by a.lgnaoui last updated on 26/May/23
First  question        cot y=(((√(1+sin x)) +(√(1−sin x)))/( (√(1+sin x)) −(√(1−sin x))))             =(([(√(1+sin x)) +(√(1−sin x)) ]^2 )/(2sin x))             =((1+∣cos x∣)/(sin x))           0 <x<(π/2)    ⇒ cos x>0   ⇒             cot y=((1+cos x)/(sin x))       ((d(cot y))/dx)=((d(cot y))/dy)×(dy/dx)      −((cos x+1)/(sin^2 x))=−(1/(sin^2 y))×(dy/dx)     ((1+cos x)/(sin^2 x))sin^2 y =(dy/(dx ))       (dy/dx)=[  ((1+cos x)/(sin^2 x))](1+cot^2 y)          =((1+cos x)/(sin^2 x ))(1+((1+cos x)/(sin x)))        =((1+cos x)/(sin^2 x))+(((1+cos x)^2 )/(sin^3 x))              (dy/dx)=(((1+cos x)(sin x+cos x+1))/(sin^3 x))
Firstquestioncoty=1+sinx+1sinx1+sinx1sinx=[1+sinx+1sinx]22sinx=1+cosxsinx0<x<π2cosx>0coty=1+cosxsinxd(coty)dx=d(coty)dy×dydxcosx+1sin2x=1sin2y×dydx1+cosxsin2xsin2y=dydxdydx=[1+cosxsin2x](1+cot2y)=1+cosxsin2x(1+1+cosxsinx)=1+cosxsin2x+(1+cosx)2sin3xdydx=(1+cosx)(sinx+cosx+1)sin3x

Leave a Reply

Your email address will not be published. Required fields are marked *