Menu Close

What-is-the-value-of-inside-Area-of-ABCDEF-Such-that-AOB-120-ANB-60-R-ON-OA-OB-32cm-ArcAE-ArcBF-r-12cm-BASE-is-circulare-Aider-le-tailleur-a-savoir-la-surface-du-tissu-necessaire-pour-co




Question Number 191930 by a.lgnaoui last updated on 05/May/23
What is the value of inside Area of  (ABCDEF)?  Such that: ∡AOB=120   ∡ANB=60;°R=ON   (OA=OB=32cm) ArcAE=ArcBF(r=12cm)  BASE is circulare  (Aider le tailleur a savoir la surface  du tissu necessaire pour couvrir    l ′espace indique dans la figure?)
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{inside}\:\mathrm{Area}\:\mathrm{of} \\ $$$$\left(\mathrm{ABCDEF}\right)? \\ $$$$\mathrm{Such}\:\mathrm{that}:\:\measuredangle\mathrm{AOB}=\mathrm{120}\:\:\:\measuredangle\mathrm{ANB}=\mathrm{60};°\mathrm{R}=\mathrm{ON} \\ $$$$\:\left(\mathrm{OA}=\mathrm{OB}=\mathrm{32cm}\right)\:\mathrm{ArcAE}=\mathrm{ArcBF}\left(\mathrm{r}=\mathrm{12cm}\right) \\ $$$$\mathrm{BASE}\:\mathrm{is}\:\mathrm{circulare} \\ $$$$\left({Aider}\:{le}\:{tailleur}\:{a}\:{savoir}\:{la}\:{surface}\right. \\ $$$${du}\:{tissu}\:{necessaire}\:{pour}\:{couvrir}\: \\ $$$$\left.\:{l}\:'\mathrm{e}{space}\:{indique}\:{dans}\:{la}\:{figure}?\right) \\ $$
Commented by a.lgnaoui last updated on 04/May/23
Commented by a.lgnaoui last updated on 04/May/23
λ=120
$$\lambda=\mathrm{120} \\ $$
Commented by Skabetix last updated on 04/May/23
Quel est ton raisonnement ?  j avoue avoir des difficultes a poser le probleme
$${Quel}\:{est}\:{ton}\:{raisonnement}\:? \\ $$$${j}\:{avoue}\:{avoir}\:{des}\:{difficultes}\:{a}\:{poser}\:{le}\:{probleme} \\ $$
Answered by a.lgnaoui last updated on 05/May/23
     AB=2OAcos 60=64×(1/2)=32cm     AE=2r=24cm  ⇒24^2 =AC^2 +CE^2       d′ apres la figure  AC=CE(∡CEA=45°)      24=AC(√2)   AC=CE=12(√2)     alors la surface des Rectangles(ABCD)     et(CDEF)=2×(AB×AC)=2×32×12(√2)     =64×12(√2) =768(√2) =1086,11cm^2      surface des ailes     s=2(AC^2 −(𝛑/4)r^2 )=2(228−36𝛑)      =456−72𝛑=229,80       Surface  totale=1086,11+229,80       =1 315,91 cm^2
$$ \\ $$$$\:\:\:\boldsymbol{\mathrm{AB}}=\mathrm{2}\boldsymbol{\mathrm{OA}}\mathrm{cos}\:\mathrm{60}=\mathrm{64}×\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{32}\boldsymbol{\mathrm{cm}} \\ $$$$\:\:\:\boldsymbol{\mathrm{AE}}=\mathrm{2}\boldsymbol{\mathrm{r}}=\mathrm{24}\boldsymbol{\mathrm{cm}}\:\:\Rightarrow\mathrm{24}^{\mathrm{2}} =\boldsymbol{\mathrm{AC}}^{\mathrm{2}} +\boldsymbol{\mathrm{CE}}^{\mathrm{2}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{apres}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{figure}}\:\:\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{CE}}\left(\measuredangle\mathrm{CEA}=\mathrm{45}°\right) \\ $$$$\:\:\:\:\mathrm{24}=\boldsymbol{\mathrm{AC}}\sqrt{\mathrm{2}}\:\:\:\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{CE}}=\mathrm{12}\sqrt{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{alors}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{des}}\:\boldsymbol{\mathrm{Rectangles}}\left(\boldsymbol{\mathrm{ABCD}}\right) \\ $$$$\:\:\:\boldsymbol{\mathrm{et}}\left(\boldsymbol{\mathrm{CDEF}}\right)=\mathrm{2}×\left(\boldsymbol{\mathrm{AB}}×\boldsymbol{\mathrm{AC}}\right)=\mathrm{2}×\mathrm{32}×\mathrm{12}\sqrt{\mathrm{2}} \\ $$$$\:\:\:=\mathrm{64}×\mathrm{12}\sqrt{\mathrm{2}}\:=\mathrm{768}\sqrt{\mathrm{2}}\:=\mathrm{1086},\mathrm{11cm}^{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{des}}\:\boldsymbol{\mathrm{ailes}} \\ $$$$\:\:\:\boldsymbol{\mathrm{s}}=\mathrm{2}\left(\boldsymbol{\mathrm{AC}}^{\mathrm{2}} −\frac{\boldsymbol{\pi}}{\mathrm{4}}\mathrm{r}^{\mathrm{2}} \right)=\mathrm{2}\left(\mathrm{228}−\mathrm{36}\boldsymbol{\pi}\right) \\ $$$$\:\:\:\:=\mathrm{456}−\mathrm{72}\boldsymbol{\pi}=\mathrm{229},\mathrm{80} \\ $$$$ \\ $$$$\:\:\:\boldsymbol{\mathrm{Surface}}\:\:\boldsymbol{\mathrm{totale}}=\mathrm{1086},\mathrm{11}+\mathrm{229},\mathrm{80} \\ $$$$\:\:\:\:\:=\mathrm{1}\:\mathrm{315},\mathrm{91}\:\boldsymbol{\mathrm{cm}}^{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *