Menu Close

what-is-the-value-of-x-if-f-x-1-x-2-1-g-x-2x-7-and-f-g-1-x-3-




Question Number 94366 by i jagooll last updated on 18/May/20
what is the value of x if f(x+1) = x^2 −1  g(x)= 2x+7 and f(g^(−1) (x))= 3
whatisthevalueofxiff(x+1)=x21g(x)=2x+7andf(g1(x))=3
Commented by mr W last updated on 18/May/20
g^(−1) (x)=((x−7)/2)  f(x)=(x−1)^2 −1  f(g^(−1) (x))=(((x−7)/2)−1)^2 −1=3  ((x−7)/2)−1=±2  ⇒x=13 or 5
g1(x)=x72f(x)=(x1)21f(g1(x))=(x721)21=3x721=±2x=13or5
Commented by i jagooll last updated on 18/May/20
thank you both
thankyouboth
Commented by Abdulrahman last updated on 18/May/20
please  solve  this  3^x +x^3 =17  with  steps
pleasesolvethis3x+x3=17withsteps
Commented by mr W last updated on 18/May/20
1. we see (if you don′t see, then i can′t  help you), that x=2 is a root, since  3^2 +2^3 =9+8=17.  2. both 3^x  and x^3  are strictly increasing  functions, so 3^x +x^3  is also strictly  increasing. when a strictly increasing  function has a zero, then this zero  is the only one zero. that means  x=2 is the only one root of eqn.  x^2 +3^x =17.
1.wesee(ifyoudontsee,thenicanthelpyou),thatx=2isaroot,since32+23=9+8=17.2.both3xandx3arestrictlyincreasingfunctions,so3x+x3isalsostrictlyincreasing.whenastrictlyincreasingfunctionhasazero,thenthiszeroistheonlyonezero.thatmeansx=2istheonlyonerootofeqn.x2+3x=17.
Commented by Abdulrahman last updated on 18/May/20
bundle of thanks
bundleofthanks
Commented by Abdulrahman last updated on 18/May/20
∫(((x−2)^3 )/(2−x^2 ))dx=?
(x2)32x2dx=?
Commented by abdomathmax last updated on 18/May/20
I =∫  (((x−2)^3 )/(2−x^2 ))dx ⇒I =∫ ((x^3 −3x^2 ×2 +3x×2^2 −2^3 )/(2−x^2 ))dx  =∫ ((x^3 −6x^2  +12x+8)/(2−x^2 )) dx =−∫((x^3 −6x^2  +12x+8)/(x^2 −2))dx  =−∫  ((x(x^2 −2)−6x^2  +14x +8)/(x^2 −2))dx  =−∫ xdx +∫ ((6x^2 −14x+8)/(x^2 −2))dx  =−(x^2 /2) +∫  ((6(x^2 −2)−14x +20)/(x^2 −2))dx  =−(x^2 /2) +6x −2∫  ((7x −10)/(x^2 −2))dx  F(x)=((7x−10)/(x^2 −2)) =((7x−10)/((x−(√2))(x+(√2)))) =(a/(x−(√2))) +(b/(x+(√2)))  a =((7(√2)−10)/(2(√2))) and b =((−7(√2)−10)/(−2(√2))) =((7(√2)+10)/(2(√2)))  ∫((7x−10)/(x^2 −2))dx =((7(√2)−10)/(2(√2)))ln∣x−(√2)∣+((7(√2)+10)/(2(√2)))ln∣x+(√2)∣ +c  I =−(x^2 /2) +6x−(7(√2)−10)ln∣x−(√2)∣−(7(√2)+10)ln∣x+(√2)∣ +C
I=(x2)32x2dxI=x33x2×2+3x×22232x2dx=x36x2+12x+82x2dx=x36x2+12x+8x22dx=x(x22)6x2+14x+8x22dx=xdx+6x214x+8x22dx=x22+6(x22)14x+20x22dx=x22+6x27x10x22dxF(x)=7x10x22=7x10(x2)(x+2)=ax2+bx+2a=721022andb=721022=72+10227x10x22dx=721022lnx2+72+1022lnx+2+cI=x22+6x(7210)lnx2(72+10)lnx+2+C
Commented by mr W last updated on 18/May/20
abdulraman sir:  please open a new thread if you want  to ask a new question!
abdulramansir:pleaseopenanewthreadifyouwanttoaskanewquestion!
Commented by Abdulrahman last updated on 18/May/20
ok thanks alot
okthanksalot
Answered by john santu last updated on 18/May/20
g^(−1) (x) = f^(−1) (3)   ⇒f^(−1) (x^2 −1) = x+1 ⇒ { ((x^2 −1= 3)),((⇒ { ((x = 2)),((x = −2)) :})) :}  case(1) f^(−1) (3)= 3 & g^(−1) (x)=((x−7)/2)  ⇒ ((x−7)/2) = 3 ⇒ x = 13   case(2) f^(−1) (3)=−1 & g^(−1) (x)=((x−7)/2)  ⇒ ((x−7)/2) = −1 ⇒ x = 5   solution x = 5 or 13
g1(x)=f1(3)f1(x21)=x+1{x21=3{x=2x=2case(1)f1(3)=3&g1(x)=x72x72=3x=13case(2)f1(3)=1&g1(x)=x72x72=1x=5solutionx=5or13

Leave a Reply

Your email address will not be published. Required fields are marked *