Menu Close

what-is-the-volume-of-x-2-y-2-z-2-2-




Question Number 94701 by i jagooll last updated on 20/May/20
what is the volume of x^2 +y^2 +z^2 =2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{2} \\ $$$$ \\ $$
Commented by mr W last updated on 20/May/20
V=((4πR^3 )/3)=((4π((√2))^3 )/3)=((8π(√2))/3)
$${V}=\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{4}\pi\left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{8}\pi\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$
Commented by i jagooll last updated on 20/May/20
how use integral sir?
$$\mathrm{how}\:\mathrm{use}\:\mathrm{integral}\:\mathrm{sir}? \\ $$
Commented by i jagooll last updated on 20/May/20
vol = 8π ∫_0 ^(√2)  ∫_(−(√(2−x^2 ))) ^(√(2−x^2 ))  (√(2−x^2 −y^2 )) dy dx ?
$$\mathrm{vol}\:=\:\mathrm{8}\pi\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\:\underset{−\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }} {\overset{\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }} {\int}}\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\:\mathrm{dy}\:\mathrm{dx}\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *