Menu Close

what-Maclaurin-series-of-function-tan-x-




Question Number 83864 by jagoll last updated on 07/Mar/20
what Maclaurin series of function  tan (x)?
whatMaclaurinseriesoffunctiontan(x)?
Commented by niroj last updated on 07/Mar/20
 Solution:    let,  f(x)=tan x  ,  f_0 (0)=0     f_1 (x)= sec^2 x   ,   f_1 (0)=1     f_2 (x)= 2secx.secx.tan x  , f_2 (0)=0               = 2sec^2 xtanx    f_3 (x)= 4sec^2 x.tan^2  x+2sec^4 x  ,    f_3 (0)=2   f_4 (x)=8sec^2 xtan^3  x+8sec^4 x.tanx. ,   f_4 (0)=0   f_5 (x)= 16sec^2 xtan^4  x.+8sec^2 x.3tan^2 x.sec^2 x+     32sec^3 x.sec x tan^2  x+8sec^6 x    ,  f_5 (0)=8   now, we know maclaurin′s series of   expansion:     f(x)= f(0)+(x/(1!))f_1 (0)+(x^2 /(2!))f_2 (0)+(x^3 /(3!))f_3 (0)+(x^4 /(4!))f_4 (0)+(x^5 /(5!))f_5 (0)   tan x =0+ x.(1)+(x^2 /2)(0)+ (x^3 /6).(2)+(x^4 /(24))(0)+(x^5 /(120)).(8)   = x+(1/3)x^3 +(2/(15))x^5  +.....   hence proved maclaurin′s function   of tan x.
Solution:let,f(x)=tanx,f0(0)=0f1(x)=sec2x,f1(0)=1f2(x)=2secx.secx.tanx,f2(0)=0=2sec2xtanxf3(x)=4sec2x.tan2x+2sec4x,f3(0)=2f4(x)=8sec2xtan3x+8sec4x.tanx.,f4(0)=0f5(x)=16sec2xtan4x.+8sec2x.3tan2x.sec2x+32sec3x.secxtan2x+8sec6x,f5(0)=8now,weknowmaclaurinsseriesofexpansion:f(x)=f(0)+x1!f1(0)+x22!f2(0)+x33!f3(0)+x44!f4(0)+x55!f5(0)tanx=0+x.(1)+x22(0)+x36.(2)+x424(0)+x5120.(8)=x+13x3+215x5+..henceprovedmaclaurinsfunctionoftanx.
Commented by jagoll last updated on 07/Mar/20
thank you sir
thankyousir
Commented by niroj last updated on 07/Mar/20
you must welcome sir.
youmustwelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *