Menu Close

what-procedure-will-you-use-to-find-the-inverse-of-A-2-1-9-1-5-1-3-0-3-




Question Number 85131 by Rio Michael last updated on 19/Mar/20
what procedure will you use to   find the inverse of   A =  ((2,1,9),(1,5,1),(3,0,3) )
whatprocedurewillyouusetofindtheinverseofA=(219151303)
Commented by jagoll last updated on 19/Mar/20
(1) find ∣A∣   (2) find adj (A)  (3) if ∣A∣ ≠ 0 then  A^(−1)  = (1/(∣A∣)) ×adj(A)
(1)findA(2)findadj(A)(3)ifA0thenA1=1A×adj(A)
Commented by Rio Michael last updated on 19/Mar/20
thanks
thanks
Commented by mathmax by abdo last updated on 19/Mar/20
p(A)=det(A−xI) = determinant (((2−x         1          9)),((1            5−x         1)))                                                 ∣3                 0     3−x ∣  =(2−x) determinant (((5−x                1)),((0                  3−x)))− determinant (((1             9)),((0         3−x))) +3 determinant (((1           9)),((5−x     1)))  =(2−x)(5−x)(3−x)−(3−x) +3(1−9(5−x))  =(10−7x+x^2 )(3−x)−3+x +3(1−45+9x)  =(x^2 −7x +10)(3−x) +28x −135  =3x^2 −x^3 −21x+7x^2  +30−10x +28x −135  =−x^3   +10x^2  −31x+28x  −105  =−x^3  +10x^2 −3x −105  cayley hamilton theorem give A^3 −10A^2 +3A +105 I =0 ⇒  A(A^2 −10A +3I) =−105 I ⇒  A×(−(1/(105))(A^2 −10A +3I))=I ⇒  A^(−1)  =−(1/(105))(A^2 −10A +3I)
p(A)=det(AxI)=|2x1915x1|303x=(2x)|5x103x||1903x|+3|195x1|=(2x)(5x)(3x)(3x)+3(19(5x))=(107x+x2)(3x)3+x+3(145+9x)=(x27x+10)(3x)+28x135=3x2x321x+7x2+3010x+28x135=x3+10x231x+28x105=x3+10x23x105cayleyhamiltontheoremgiveA310A2+3A+105I=0A(A210A+3I)=105IA×(1105(A210A+3I))=IA1=1105(A210A+3I)
Commented by mathmax by abdo last updated on 19/Mar/20
also we can use A^(−1)  =((t(comA))/(detA))   this method is simple...
alsowecanuseA1=t(comA)detAthismethodissimple

Leave a Reply

Your email address will not be published. Required fields are marked *