Menu Close

what-s-the-minimum-value-of-a-1-b-a-b-where-a-gt-b-gt-0-a-b-R-




Question Number 189803 by uchihayahia last updated on 22/Mar/23
  what′s the minimum value of  a+(1/(b(a−b))) where a>b>0 a,b∈R
$$ \\ $$$${what}'{s}\:{the}\:{minimum}\:{value}\:{of} \\ $$$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)}\:{where}\:{a}>{b}>\mathrm{0}\:{a},{b}\in\mathbb{R} \\ $$$$ \\ $$
Answered by cortano12 last updated on 22/Mar/23
 f(a,b)=a+b^(−1) (a−b)^(−1) =a+(ab−b^2 )^(−1)   (∂f/∂a) =1−b(ab−b^2 )^(−2) =0   (∂f/∂b) =−(a−2b)(ab−b^2 )^(−2) =0    { ((1=(b/((ab−b^2 )^2 ))⇒1=(1/(b(2b−b)^2 )))),((((2b−a)/((ab−b^2 )^2 ))=0⇒a=2b)) :}   ⇒b^3  = 1⇒ { ((b=1)),((a=2)) :}    f(2,1)=2+(1/(1.(2−1))) = 3
$$\:\mathrm{f}\left({a},{b}\right)={a}+{b}^{−\mathrm{1}} \left({a}−{b}\right)^{−\mathrm{1}} ={a}+\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{1}} \\ $$$$\frac{\partial\mathrm{f}}{\partial{a}}\:=\mathrm{1}−{b}\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{2}} =\mathrm{0} \\ $$$$\:\frac{\partial\mathrm{f}}{\partial{b}}\:=−\left({a}−\mathrm{2}{b}\right)\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{2}} =\mathrm{0} \\ $$$$\:\begin{cases}{\mathrm{1}=\frac{{b}}{\left({ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }\Rightarrow\mathrm{1}=\frac{\mathrm{1}}{{b}\left(\mathrm{2}{b}−{b}\right)^{\mathrm{2}} }}\\{\frac{\mathrm{2}{b}−{a}}{\left({ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{0}\Rightarrow{a}=\mathrm{2}{b}}\end{cases} \\ $$$$\:\Rightarrow{b}^{\mathrm{3}} \:=\:\mathrm{1}\Rightarrow\begin{cases}{{b}=\mathrm{1}}\\{{a}=\mathrm{2}}\end{cases}\: \\ $$$$\:\mathrm{f}\left(\mathrm{2},\mathrm{1}\right)=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}.\left(\mathrm{2}−\mathrm{1}\right)}\:=\:\mathrm{3} \\ $$
Commented by uchihayahia last updated on 23/Mar/23
thank you
$${thank}\:{you} \\ $$
Answered by mr W last updated on 22/Mar/23
a+(1/(b(a−b)))  =a−b+b+(1/(b(a−b)))  =c+b+(1/(bc))                (with c=a−b>0)  ≥3((c×b×(1/(bc))))^(1/3) =3  ⇒minimum is 3
$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)} \\ $$$$={a}−{b}+{b}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)} \\ $$$$={c}+{b}+\frac{\mathrm{1}}{{bc}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({with}\:{c}={a}−{b}>\mathrm{0}\right) \\ $$$$\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{{c}×{b}×\frac{\mathrm{1}}{{bc}}}=\mathrm{3} \\ $$$$\Rightarrow{minimum}\:{is}\:\mathrm{3} \\ $$
Commented by manxsol last updated on 22/Mar/23
thanks, Sir W y Sr. Cortano
$${thanks},\:{Sir}\:{W}\:{y}\:{Sr}.\:{Cortano} \\ $$
Commented by mehdee42 last updated on 22/Mar/23
Bravo .Very beautiful
$${Bravo}\:.{Very}\:{beautiful} \\ $$
Commented by uchihayahia last updated on 23/Mar/23
thanks this is what i looking for
$${thanks}\:{this}\:{is}\:{what}\:{i}\:{looking}\:{for} \\ $$
Answered by ajfour last updated on 23/Mar/23
f=((ab)/b)+(1/(ab−b^2 ))     =(1/( (√b)))(((ab−b^2 )/( (√b)))+((√b)/(ab−b^2 )))+b   =(2/( (√b)))+b  (df/db)=−(1/(b(√b)))+1   =0  ⇒  b=1  f_(min) =2+1
$${f}=\frac{{ab}}{{b}}+\frac{\mathrm{1}}{{ab}−{b}^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\mathrm{1}}{\:\sqrt{{b}}}\left(\frac{{ab}−{b}^{\mathrm{2}} }{\:\sqrt{{b}}}+\frac{\sqrt{{b}}}{{ab}−{b}^{\mathrm{2}} }\right)+{b} \\ $$$$\:=\frac{\mathrm{2}}{\:\sqrt{{b}}}+{b} \\ $$$$\frac{{df}}{{db}}=−\frac{\mathrm{1}}{{b}\sqrt{{b}}}+\mathrm{1}\:\:\:=\mathrm{0}\:\:\Rightarrow\:\:{b}=\mathrm{1} \\ $$$${f}_{{min}} =\mathrm{2}+\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *