Menu Close

What-s-the-smallest-value-of-a-2-b-2-1-ab-for-a-b-gt-0-




Question Number 180953 by depressiveshrek last updated on 19/Nov/22
What′s the smallest value of  a^2 +b^2 +(1/(ab)) for a, b>0?
Whatsthesmallestvalueofa2+b2+1abfora,b>0?
Answered by mr W last updated on 19/Nov/22
a^2 +b^2 +(1/(ab))≥2ab+(1/(ab))≥2(√(2ab×(1/(ab))))=2(√2)  minimum=2(√2)  when a=b and 2ab=(1/(ab)), i.e. a=b=(1/( (2)^(1/4) ))
a2+b2+1ab2ab+1ab22ab×1ab=22minimum=22whena=band2ab=1ab,i.e.a=b=124
Answered by mr W last updated on 20/Nov/22
an other way  f(a,b)=a^2 +b^2 +(1/(ab))  (∂f/∂a)=2a−(1/(a^2 b))=0 ⇒2a^3 b=1   ...(i)  (∂f/∂b)=2b−(1/(ab^2 ))=0 ⇒2ab^3 =1   ...(ii)  from (i) and (ii):  a=b=(1/( (2)^(1/4) ))  ⇒f_(min) =2(√2)  (it′s minimum, not maximum  because (∂^2 f/∂a^2 )>0 and (∂^2 f/∂b^2 )>0)
anotherwayf(a,b)=a2+b2+1abfa=2a1a2b=02a3b=1(i)fb=2b1ab2=02ab3=1(ii)from(i)and(ii):a=b=124fmin=22(itsminimum,notmaximumbecause2fa2>0and2fb2>0)

Leave a Reply

Your email address will not be published. Required fields are marked *