Menu Close

What-s-the-smallest-value-of-a-2-b-2-1-ab-for-a-b-gt-0-




Question Number 180953 by depressiveshrek last updated on 19/Nov/22
What′s the smallest value of  a^2 +b^2 +(1/(ab)) for a, b>0?
$${What}'{s}\:{the}\:{smallest}\:{value}\:{of} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\frac{\mathrm{1}}{{ab}}\:{for}\:{a},\:{b}>\mathrm{0}? \\ $$
Answered by mr W last updated on 19/Nov/22
a^2 +b^2 +(1/(ab))≥2ab+(1/(ab))≥2(√(2ab×(1/(ab))))=2(√2)  minimum=2(√2)  when a=b and 2ab=(1/(ab)), i.e. a=b=(1/( (2)^(1/4) ))
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\frac{\mathrm{1}}{{ab}}\geqslant\mathrm{2}{ab}+\frac{\mathrm{1}}{{ab}}\geqslant\mathrm{2}\sqrt{\mathrm{2}{ab}×\frac{\mathrm{1}}{{ab}}}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${minimum}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${when}\:{a}={b}\:{and}\:\mathrm{2}{ab}=\frac{\mathrm{1}}{{ab}},\:{i}.{e}.\:{a}={b}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{2}}} \\ $$
Answered by mr W last updated on 20/Nov/22
an other way  f(a,b)=a^2 +b^2 +(1/(ab))  (∂f/∂a)=2a−(1/(a^2 b))=0 ⇒2a^3 b=1   ...(i)  (∂f/∂b)=2b−(1/(ab^2 ))=0 ⇒2ab^3 =1   ...(ii)  from (i) and (ii):  a=b=(1/( (2)^(1/4) ))  ⇒f_(min) =2(√2)  (it′s minimum, not maximum  because (∂^2 f/∂a^2 )>0 and (∂^2 f/∂b^2 )>0)
$${an}\:{other}\:{way} \\ $$$${f}\left({a},{b}\right)={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\frac{\mathrm{1}}{{ab}} \\ $$$$\frac{\partial{f}}{\partial{a}}=\mathrm{2}{a}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} {b}}=\mathrm{0}\:\Rightarrow\mathrm{2}{a}^{\mathrm{3}} {b}=\mathrm{1}\:\:\:…\left({i}\right) \\ $$$$\frac{\partial{f}}{\partial{b}}=\mathrm{2}{b}−\frac{\mathrm{1}}{{ab}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\mathrm{2}{ab}^{\mathrm{3}} =\mathrm{1}\:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$${a}={b}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{2}}} \\ $$$$\Rightarrow{f}_{{min}} =\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\left({it}'{s}\:{minimum},\:{not}\:{maximum}\right. \\ $$$$\left.{because}\:\frac{\partial^{\mathrm{2}} {f}}{\partial{a}^{\mathrm{2}} }>\mathrm{0}\:{and}\:\frac{\partial^{\mathrm{2}} {f}}{\partial{b}^{\mathrm{2}} }>\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *