Menu Close

what-the-equation-of-parabola-whose-focus-F-3-4-and-directrix-is-3x-4y-5-0-




Question Number 112664 by bemath last updated on 09/Sep/20
what the equation of parabola   whose focus F(−3,4) and directrix  is 3x−4y+5=0 ?
whattheequationofparabolawhosefocusF(3,4)anddirectrixis3x4y+5=0?
Commented by bemath last updated on 09/Sep/20
Answered by bobhans last updated on 09/Sep/20
(⧫) (√((x+3)^2 +(y−4)^2 )) = ∣((3x−4y+5)/5)∣  squaring ⇒(x−3)^2 +(y−4)^2  =(((3x−4y+5)^2 )/(25))  ⇒25(x^2 +y^2 −6x−8y+25)=9x^2 +16y^2 +25−24xy+30x−40y  ⇒16x^2 +9y^2 +24xy−150x−160y+600=0
()(x+3)2+(y4)2=3x4y+55squaring(x3)2+(y4)2=(3x4y+5)22525(x2+y26x8y+25)=9x2+16y2+2524xy+30x40y16x2+9y2+24xy150x160y+600=0

Leave a Reply

Your email address will not be published. Required fields are marked *