Menu Close

what-the-value-of-log-10-1-in-complex-number-




Question Number 116725 by bemath last updated on 06/Oct/20
what the value of log _(10) (−1) in   complex number
whatthevalueoflog10(1)incomplexnumber
Commented by bemath last updated on 06/Oct/20
thank you prof
thankyouprof
Commented by MJS_new last updated on 06/Oct/20
usually we take the principal value  z=re^(iθ)  with r∈R^+  and −π≤θ<π [ ]  ⇒ principal value of  ln z =ln r +iθ  and log_z_2   z_1  =((ln z_1 )/(ln z_2 ))=((ln r_1 e^(iθ_1 ) )/(ln r_2 e^(iθ_2 ) ))=((ln r_1  +iθ_1 )/(ln r_2  +iθ_2 ))=  =((θ_1 θ_2 +ln r_1  ln r_2 )/(ln^2  r_2  +θ_2 ^2 ))+i((θ_1 ln r_2  −θ_2 ln r_1 )/(ln^2  r_2  +θ_2 ^2 ))  with r_1 , r_2  >0
usuallywetaketheprincipalvaluez=reiθwithrR+andπθ<π[]principalvalueoflnz=lnr+iθandlogz2z1=lnz1lnz2=lnr1eiθ1lnr2eiθ2=lnr1+iθ1lnr2+iθ2==θ1θ2+lnr1lnr2ln2r2+θ22+iθ1lnr2θ2lnr1ln2r2+θ22withr1,r2>0
Commented by MJS_new last updated on 06/Oct/20
btw also ln e^r  =r is “only” the principal  value: e^r =e^r e^(2nπi)  ⇒ ln e^r  =r+2nπi but  who would like to use this?
btwalsolner=risonlytheprincipalvalue:er=ere2nπilner=r+2nπibutwhowouldliketousethis?
Answered by MJS_new last updated on 06/Oct/20
log_(10)  (−1) =((ln (−1))/(ln 10))=((ln e^(iπ) )/(ln 10))=((iπ)/(ln 10))
log10(1)=ln(1)ln10=lneiπln10=iπln10
Commented by bemath last updated on 06/Oct/20
sir if log _(10) (0) = ?
siriflog10(0)=?
Commented by bemath last updated on 06/Oct/20
−1 = cos π+ i.sin π , sir
1=cosπ+i.sinπ,sir
Answered by TANMAY PANACEA last updated on 06/Oct/20
trying  Log(a+ib)  a=rcosθ   b=rsinθ  Log(re^(iθ) )=Log(re^(i(2kπ+θ)) )=logr+i(2kπ+θ)  Log(a+ib)=log((√(a^2 +b^2 )) )+i{2kπ+tan^(−1) ((b/a))}  Log(a+ib)=(1/2)log(a^2 +b^2 )+i(2kπ+tan^(−1) ((b/a)))  log_(10) p×x=log_e p  ((logp)/(log10))×x=((logp)/(loge))→x=log_e 10  log_(10) (−1)=log_e (−1)×log_(10) e  log_(10) (−1)  =log_e (−1)×log_(10) e  =[(1/2)ln(1+0^2 )+i(2kπ+tan^(−1) (((−1)/0))]log_(10) e  =[0+i(2kπ−(π/2))]log_(10) e
tryingLog(a+ib)a=rcosθb=rsinθLog(reiθ)=Log(rei(2kπ+θ))=logr+i(2kπ+θ)Log(a+ib)=log(a2+b2)+i{2kπ+tan1(ba)}Log(a+ib)=12log(a2+b2)+i(2kπ+tan1(ba))log10p×x=logeplogplog10×x=logplogex=loge10log10(1)=loge(1)×log10elog10(1)=loge(1)×log10e=[12ln(1+02)+i(2kπ+tan1(10)]log10e=[0+i(2kππ2)]log10e
Commented by bemath last updated on 06/Oct/20
how about log _(10) (0) sir
howaboutlog10(0)sir
Commented by Rio Michael last updated on 06/Oct/20
now am sure log_(10) (0) should be undefined  since  ln (0) is undefined.
nowamsurelog10(0)shouldbeundefinedsinceln(0)isundefined.
Commented by Dwaipayan Shikari last updated on 06/Oct/20
Yes!
Yes!
Commented by bemath last updated on 06/Oct/20
ok. thank you all
ok.thankyouall
Answered by Rio Michael last updated on 06/Oct/20
i know ln(−1) = πi  log(−1) = ((ln(−1))/(ln 10)) = ((πi)/(ln 10))
iknowln(1)=πilog(1)=ln(1)ln10=πiln10
Answered by Dwaipayan Shikari last updated on 06/Oct/20
log_(10) (1−x)=((log(1−x))/(log10))=−(1/(log10))(x+(x^2 /2)+(x^3 /3)+....)  X=1  −(1/(log10))(1+(1/2)+(1/3)+....)→−∞
log10(1x)=log(1x)log10=1log10(x+x22+x33+.)X=11log10(1+12+13+.)
Commented by Dwaipayan Shikari last updated on 06/Oct/20
Basically 1+(1/2)+(1/3)+(1/4)+.... is undefined  But generally take it as diverges...
Basically1+12+13+14+.isundefinedButgenerallytakeitasdiverges

Leave a Reply

Your email address will not be published. Required fields are marked *