Menu Close

what-the-value-of-log-10-1-in-complex-number-




Question Number 116725 by bemath last updated on 06/Oct/20
what the value of log _(10) (−1) in   complex number
$$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{log}\:_{\mathrm{10}} \left(−\mathrm{1}\right)\:\mathrm{in}\: \\ $$$$\mathrm{complex}\:\mathrm{number} \\ $$
Commented by bemath last updated on 06/Oct/20
thank you prof
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{prof} \\ $$
Commented by MJS_new last updated on 06/Oct/20
usually we take the principal value  z=re^(iθ)  with r∈R^+  and −π≤θ<π [ ]  ⇒ principal value of  ln z =ln r +iθ  and log_z_2   z_1  =((ln z_1 )/(ln z_2 ))=((ln r_1 e^(iθ_1 ) )/(ln r_2 e^(iθ_2 ) ))=((ln r_1  +iθ_1 )/(ln r_2  +iθ_2 ))=  =((θ_1 θ_2 +ln r_1  ln r_2 )/(ln^2  r_2  +θ_2 ^2 ))+i((θ_1 ln r_2  −θ_2 ln r_1 )/(ln^2  r_2  +θ_2 ^2 ))  with r_1 , r_2  >0
$$\mathrm{usually}\:\mathrm{we}\:\mathrm{take}\:\mathrm{the}\:\mathrm{principal}\:\mathrm{value} \\ $$$${z}={r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{with}\:{r}\in\mathbb{R}^{+} \:\mathrm{and}\:−\pi\leqslant\theta<\pi\:\left[\:\right] \\ $$$$\Rightarrow\:\mathrm{principal}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{ln}\:{z}\:=\mathrm{ln}\:{r}\:+\mathrm{i}\theta \\ $$$$\mathrm{and}\:\mathrm{log}_{{z}_{\mathrm{2}} } \:{z}_{\mathrm{1}} \:=\frac{\mathrm{ln}\:{z}_{\mathrm{1}} }{\mathrm{ln}\:{z}_{\mathrm{2}} }=\frac{\mathrm{ln}\:{r}_{\mathrm{1}} \mathrm{e}^{\mathrm{i}\theta_{\mathrm{1}} } }{\mathrm{ln}\:{r}_{\mathrm{2}} \mathrm{e}^{\mathrm{i}\theta_{\mathrm{2}} } }=\frac{\mathrm{ln}\:{r}_{\mathrm{1}} \:+\mathrm{i}\theta_{\mathrm{1}} }{\mathrm{ln}\:{r}_{\mathrm{2}} \:+\mathrm{i}\theta_{\mathrm{2}} }= \\ $$$$=\frac{\theta_{\mathrm{1}} \theta_{\mathrm{2}} +\mathrm{ln}\:{r}_{\mathrm{1}} \:\mathrm{ln}\:{r}_{\mathrm{2}} }{\mathrm{ln}^{\mathrm{2}} \:{r}_{\mathrm{2}} \:+\theta_{\mathrm{2}} ^{\mathrm{2}} }+\mathrm{i}\frac{\theta_{\mathrm{1}} \mathrm{ln}\:{r}_{\mathrm{2}} \:−\theta_{\mathrm{2}} \mathrm{ln}\:{r}_{\mathrm{1}} }{\mathrm{ln}^{\mathrm{2}} \:{r}_{\mathrm{2}} \:+\theta_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$$\mathrm{with}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} \:>\mathrm{0} \\ $$
Commented by MJS_new last updated on 06/Oct/20
btw also ln e^r  =r is “only” the principal  value: e^r =e^r e^(2nπi)  ⇒ ln e^r  =r+2nπi but  who would like to use this?
$$\mathrm{btw}\:\mathrm{also}\:\mathrm{ln}\:\mathrm{e}^{{r}} \:={r}\:\mathrm{is}\:“\mathrm{only}''\:\mathrm{the}\:\mathrm{principal} \\ $$$$\mathrm{value}:\:\mathrm{e}^{{r}} =\mathrm{e}^{{r}} \mathrm{e}^{\mathrm{2}{n}\pi\mathrm{i}} \:\Rightarrow\:\mathrm{ln}\:\mathrm{e}^{{r}} \:={r}+\mathrm{2}{n}\pi\mathrm{i}\:\mathrm{but} \\ $$$$\mathrm{who}\:\mathrm{would}\:\mathrm{like}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this}? \\ $$
Answered by MJS_new last updated on 06/Oct/20
log_(10)  (−1) =((ln (−1))/(ln 10))=((ln e^(iπ) )/(ln 10))=((iπ)/(ln 10))
$$\mathrm{log}_{\mathrm{10}} \:\left(−\mathrm{1}\right)\:=\frac{\mathrm{ln}\:\left(−\mathrm{1}\right)}{\mathrm{ln}\:\mathrm{10}}=\frac{\mathrm{ln}\:\mathrm{e}^{\mathrm{i}\pi} }{\mathrm{ln}\:\mathrm{10}}=\frac{\mathrm{i}\pi}{\mathrm{ln}\:\mathrm{10}} \\ $$
Commented by bemath last updated on 06/Oct/20
sir if log _(10) (0) = ?
$$\mathrm{sir}\:\mathrm{if}\:\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{0}\right)\:=\:?\: \\ $$
Commented by bemath last updated on 06/Oct/20
−1 = cos π+ i.sin π , sir
$$−\mathrm{1}\:=\:\mathrm{cos}\:\pi+\:{i}.\mathrm{sin}\:\pi\:,\:\mathrm{sir} \\ $$$$ \\ $$
Answered by TANMAY PANACEA last updated on 06/Oct/20
trying  Log(a+ib)  a=rcosθ   b=rsinθ  Log(re^(iθ) )=Log(re^(i(2kπ+θ)) )=logr+i(2kπ+θ)  Log(a+ib)=log((√(a^2 +b^2 )) )+i{2kπ+tan^(−1) ((b/a))}  Log(a+ib)=(1/2)log(a^2 +b^2 )+i(2kπ+tan^(−1) ((b/a)))  log_(10) p×x=log_e p  ((logp)/(log10))×x=((logp)/(loge))→x=log_e 10  log_(10) (−1)=log_e (−1)×log_(10) e  log_(10) (−1)  =log_e (−1)×log_(10) e  =[(1/2)ln(1+0^2 )+i(2kπ+tan^(−1) (((−1)/0))]log_(10) e  =[0+i(2kπ−(π/2))]log_(10) e
$${trying} \\ $$$${Log}\left({a}+{ib}\right) \\ $$$${a}={rcos}\theta\:\:\:{b}={rsin}\theta \\ $$$${Log}\left({re}^{{i}\theta} \right)={Log}\left({re}^{{i}\left(\mathrm{2}{k}\pi+\theta\right)} \right)={logr}+{i}\left(\mathrm{2}{k}\pi+\theta\right) \\ $$$${Log}\left({a}+{ib}\right)={log}\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\right)+{i}\left\{\mathrm{2}{k}\pi+{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)\right\} \\ $$$${Log}\left({a}+{ib}\right)=\frac{\mathrm{1}}{\mathrm{2}}{log}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)+{i}\left(\mathrm{2}{k}\pi+{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)\right) \\ $$$${log}_{\mathrm{10}} {p}×{x}={log}_{{e}} {p} \\ $$$$\frac{{logp}}{{log}\mathrm{10}}×{x}=\frac{{logp}}{{loge}}\rightarrow{x}={log}_{{e}} \mathrm{10} \\ $$$$\boldsymbol{{log}}_{\mathrm{10}} \left(−\mathrm{1}\right)=\boldsymbol{{log}}_{\boldsymbol{{e}}} \left(−\mathrm{1}\right)×\boldsymbol{{log}}_{\mathrm{10}} \boldsymbol{{e}} \\ $$$$\boldsymbol{{log}}_{\mathrm{10}} \left(−\mathrm{1}\right) \\ $$$$=\boldsymbol{{log}}_{\boldsymbol{{e}}} \left(−\mathrm{1}\right)×\boldsymbol{{log}}_{\mathrm{10}} \boldsymbol{{e}} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\mathrm{0}^{\mathrm{2}} \right)+{i}\left(\mathrm{2}{k}\pi+{tan}^{−\mathrm{1}} \left(\frac{−\mathrm{1}}{\mathrm{0}}\right)\right]{log}_{\mathrm{10}} {e}\right. \\ $$$$=\left[\mathrm{0}+{i}\left(\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{2}}\right)\right]{log}_{\mathrm{10}} {e} \\ $$$$ \\ $$$$ \\ $$
Commented by bemath last updated on 06/Oct/20
how about log _(10) (0) sir
$$\mathrm{how}\:\mathrm{about}\:\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{0}\right)\:\mathrm{sir} \\ $$
Commented by Rio Michael last updated on 06/Oct/20
now am sure log_(10) (0) should be undefined  since  ln (0) is undefined.
$$\mathrm{now}\:\mathrm{am}\:\mathrm{sure}\:\mathrm{log}_{\mathrm{10}} \left(\mathrm{0}\right)\:\mathrm{should}\:\mathrm{be}\:\mathrm{undefined} \\ $$$$\mathrm{since}\:\:\mathrm{ln}\:\left(\mathrm{0}\right)\:\mathrm{is}\:\mathrm{undefined}. \\ $$
Commented by Dwaipayan Shikari last updated on 06/Oct/20
Yes!
$${Yes}! \\ $$
Commented by bemath last updated on 06/Oct/20
ok. thank you all
$$\mathrm{ok}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{all} \\ $$
Answered by Rio Michael last updated on 06/Oct/20
i know ln(−1) = πi  log(−1) = ((ln(−1))/(ln 10)) = ((πi)/(ln 10))
$$\mathrm{i}\:\mathrm{know}\:\mathrm{ln}\left(−\mathrm{1}\right)\:=\:\pi{i} \\ $$$$\mathrm{log}\left(−\mathrm{1}\right)\:=\:\frac{\mathrm{ln}\left(−\mathrm{1}\right)}{\mathrm{ln}\:\mathrm{10}}\:=\:\frac{\pi{i}}{\mathrm{ln}\:\mathrm{10}} \\ $$
Answered by Dwaipayan Shikari last updated on 06/Oct/20
log_(10) (1−x)=((log(1−x))/(log10))=−(1/(log10))(x+(x^2 /2)+(x^3 /3)+....)  X=1  −(1/(log10))(1+(1/2)+(1/3)+....)→−∞
$${log}_{\mathrm{10}} \left(\mathrm{1}−{x}\right)=\frac{{log}\left(\mathrm{1}−{x}\right)}{{log}\mathrm{10}}=−\frac{\mathrm{1}}{{log}\mathrm{10}}\left({x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+….\right) \\ $$$${X}=\mathrm{1} \\ $$$$−\frac{\mathrm{1}}{{log}\mathrm{10}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….\right)\rightarrow−\infty \\ $$
Commented by Dwaipayan Shikari last updated on 06/Oct/20
Basically 1+(1/2)+(1/3)+(1/4)+.... is undefined  But generally take it as diverges...
$${Basically}\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+….\:{is}\:{undefined} \\ $$$${But}\:{generally}\:{take}\:{it}\:{as}\:{diverges}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *