Menu Close

When-x-7-97x-6-199x-5-99x-4-2x-190-is-divided-by-x-99-find-the-remainder-




Question Number 40474 by KMA last updated on 22/Jul/18
When x^7 −97x^6 −199x^5 +99x^4 −  2x+190 is divided by x−99 find   the remainder.
$${When}\:{x}^{\mathrm{7}} −\mathrm{97}{x}^{\mathrm{6}} −\mathrm{199}{x}^{\mathrm{5}} +\mathrm{99}{x}^{\mathrm{4}} − \\ $$$$\mathrm{2}{x}+\mathrm{190}\:{is}\:{divided}\:{by}\:{x}−\mathrm{99}\:{find}\: \\ $$$${the}\:{remainder}. \\ $$
Answered by $@ty@m last updated on 22/Jul/18
Commented by $@ty@m last updated on 22/Jul/18
Answered by math1967 last updated on 22/Jul/18
f(x)=x^6 (x−99)−2x^5 (x−99)−x^4 (x−99)  −2(x−99)−8  ∴f(99)=0−8=−8 ans
$${f}\left({x}\right)={x}^{\mathrm{6}} \left({x}−\mathrm{99}\right)−\mathrm{2}{x}^{\mathrm{5}} \left({x}−\mathrm{99}\right)−{x}^{\mathrm{4}} \left({x}−\mathrm{99}\right) \\ $$$$−\mathrm{2}\left({x}−\mathrm{99}\right)−\mathrm{8} \\ $$$$\therefore{f}\left(\mathrm{99}\right)=\mathrm{0}−\mathrm{8}=−\mathrm{8}\:{ans} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *