Menu Close

When-y-ax-b-is-a-tangent-line-to-the-curve-f-x-x-3-passing-through-0-2-find-a-b-




Question Number 103659 by abony1303 last updated on 16/Jul/20
When y=ax+b is a tangent line to the  curve f(x)=x^3  passing through (0; −2),  find a+b?
Wheny=ax+bisatangentlinetothecurvef(x)=x3passingthrough(0;2),finda+b?
Commented by abony1303 last updated on 16/Jul/20
pls help
plshelp
Answered by Aziztisffola last updated on 16/Jul/20
y(0)=−2 ⇒a×0+b=−2⇒b=−2   Slope of (y=ax+b) is a and  (y)∩(f)=(x_0 ,f(x_0 )) we get a=f ′(x_0 )=3x_0 ^2     { ((f(x_0 )=x_0 ^3 )),((y(x_0 )=ax_0 −2)) :} and f(x_0 )=y(x_0 )⇒  a=((x_0 ^3 +2)/x_0 )=3x_0 ^2  ⇒ 2x_0 ^3 −2=0 ⇒x_0 ^3 −1=0  ⇒x_0 =1  ⇒ a=3×1^2 =3   Hence y(x)=3x−2 ■
y(0)=2a×0+b=2b=2Slopeof(y=ax+b)isaand(y)(f)=(x0,f(x0))wegeta=f(x0)=3x02{f(x0)=x03y(x0)=ax02andf(x0)=y(x0)a=x03+2x0=3x022x032=0x031=0x0=1a=3×12=3Hencey(x)=3x2◼
Answered by bemath last updated on 16/Jul/20
(1) (0,−2) ⇒−2=b ; y = ax−2  let (x_o , x_o ^3 ) the point in tangent  line so ⇒slope = 3x_o ^2  = a and ((x_o ^3 +2)/x_o ) = a  ⇔x_o ^3 +2 = 3x_o ^3  ⇔x_o =1 then the line y = ax−b passes through   the point (1, 1) ⇒1 = a.1−2 , → { ((a=3)),((b=−2)) :}  ∴ a+b = 1
(1)(0,2)2=b;y=ax2let(xo,xo3)thepointintangentlinesoslope=3xo2=aandxo3+2xo=axo3+2=3xo3xo=1thentheliney=axbpassesthroughthepoint(1,1)1=a.12,{a=3b=2a+b=1

Leave a Reply

Your email address will not be published. Required fields are marked *