Question Number 18091 by Tinkutara last updated on 15/Jul/17
$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{statement}\left(\mathrm{s}\right) \\ $$$$\mathrm{is}/\mathrm{are}\:\mathrm{correct}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{cos}\left(\mathrm{sin1}\right)\:>\:\mathrm{sin}\left(\mathrm{cos1}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{cos}\left(\mathrm{sin1}.\mathrm{5}\right)\:>\:\mathrm{sin}\left(\mathrm{cos1}.\mathrm{5}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\left(\mathrm{sin}\frac{\mathrm{7}\pi}{\mathrm{18}}\right)\:>\:\mathrm{sin}\left(\mathrm{cos}\frac{\mathrm{7}\pi}{\mathrm{18}}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{cos}\left(\mathrm{sin}\frac{\mathrm{5}\pi}{\mathrm{18}}\right)\:>\:\mathrm{sin}\left(\mathrm{cos}\frac{\mathrm{5}\pi}{\mathrm{18}}\right) \\ $$
Answered by Tinkutara last updated on 25/Jul/17
$$\mathrm{We}\:\mathrm{have},\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}\:<\:\sqrt{\mathrm{2}}\:<\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{sin}\:{x}\:<\:\frac{\pi}{\mathrm{2}}\:−\:\mathrm{cos}\:{x} \\ $$$$\mathrm{Since}\:\mathrm{cos}\:{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{decreasing}\:\mathrm{function}\:\mathrm{from} \\ $$$$\mathrm{0}\:\mathrm{to}\:\frac{\pi}{\mathrm{2}},\:\therefore\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:>\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}\:−\:\mathrm{cos}\:{x}\right) \\ $$$$\Rightarrow\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:>\:\mathrm{sin}\:\left(\mathrm{cos}\:{x}\right) \\ $$$$\mathrm{Since}\:\mathrm{all}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{options} \\ $$$$\mathrm{are}\:\mathrm{lying}\:\mathrm{between}\:\mathrm{0}\:\mathrm{to}\:\frac{\pi}{\mathrm{2}},\:\therefore\:\mathrm{all}\:\mathrm{options} \\ $$$$\mathrm{are}\:\mathrm{correct}. \\ $$