Question Number 87563 by Serlea last updated on 05/Apr/20
$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{numbers} \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}} }\:\mathrm{and}\: \\ $$$$\frac{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}} }\:\mathrm{is}\:\mathrm{greater}? \\ $$
Commented by danger last updated on 05/Apr/20
$$\mathrm{1}{st}\:{one} \\ $$
Commented by danger last updated on 05/Apr/20
$${not}\:{clear} \\ $$
Commented by $@ty@m123 last updated on 05/Apr/20
$${It}'{s}\:{better}\:{if}\:{you}\:{type}\:{the}\:{question}. \\ $$
Commented by danger last updated on 05/Apr/20
$${your}\:{question}\:{is}\:{not}\:{complete} \\ $$
Commented by danger last updated on 05/Apr/20
$${ok}\:{done} \\ $$
Answered by $@ty@m123 last updated on 05/Apr/20
$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}} }\:=\frac{\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}}\:…\left({i}\right) \\ $$$$\frac{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}} }\:=\frac{\mathrm{3}^{{n}−\mathrm{1}} −\mathrm{1}}{\mathrm{3}^{{n}} −\mathrm{1}}\:….\left({ii}\right) \\ $$$${Put}\:{n}=\mathrm{2},\:{then} \\ $$$$\left({i}\right)\equiv\frac{\mathrm{1}}{\mathrm{3}}\:\:\&\:\left({ii}\right)\equiv\:\frac{\mathrm{2}}{\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${Hence}\left({i}\right)>\left({ii}\right) \\ $$