Menu Close

Which-one-of-the-following-sets-of-vectors-is-a-basis-for-R-2-A-1-2-3-6-B-1-1-2-2-C-2-1-0-1-D-1-2-4-8-




Question Number 84316 by Rio Michael last updated on 11/Mar/20
Which one of the following sets of  vectors is a basis for R^2   [A] { ((1),((−2)) ) ,  (((−3)),(6) )}  [B] { ((1),(1) ) , ((2),(2) )}  [C] { ((2),(1) ) , ((0),(1) )}  [D] { ((1),(2) ) ,  ((4),(8) ) }
WhichoneofthefollowingsetsofvectorsisabasisforR2[A]{(12),(36)}[B]{(11),(22)}[C]{(21),(01)}[D]{(12),(48)}
Commented by Rio Michael last updated on 11/Mar/20
please explain
pleaseexplain
Answered by MJS last updated on 11/Mar/20
the vectors must be linear independent  this means there′s no real number r with  r×a^⇀ =b^⇀   set A (−3)× ((1),((−2)) )= (((−3)),(6) ) no basis  set B 2× ((1),(1) )= ((2),(2) ) no basis  set C ∄r: r× ((2),(1) )= ((0),(1) ) basis  set D 4× ((1),(2) )= ((4),(8) ) no basis  {a^⇀ , b^⇀ } is a basis means using two real parameters  p, q you can “reach” any point of R^2  with  OX^(⇀) =p×a^⇀ +q×b^⇀   set C   ((x),(y) )=p× ((2),(1) )+q× ((0),(1) )= (((2p)),((p+q)) )   { ((x=2p)),((y=p+q)) :} ⇔  { ((p=(x/2))),((q=y−(x/2))) :} ⇒  ⇒ for any given point  ((x),(y) ) we can find a unique  pair (p, q)
thevectorsmustbelinearindependentthismeanstheresnorealnumberrwithr×a=bsetA(3)×(12)=(36)nobasissetB2×(11)=(22)nobasissetCr:r×(21)=(01)basissetD4×(12)=(48)nobasis{a,b}isabasismeansusingtworealparametersp,qyoucanreachanypointofR2withOX=p×a+q×bsetC(xy)=p×(21)+q×(01)=(2pp+q){x=2py=p+q{p=x2q=yx2foranygivenpoint(xy)wecanfindauniquepair(p,q)
Commented by Rio Michael last updated on 11/Mar/20
Sir if the vectors  ((a_1 ),(b_1 ),(c_1 ) )   and  ((a_2 ),(b_2 ),(c_3 ) )  are linearly  independent,  then   determinant ((a_1 ,b_1 ,c_1 ),(a_2 ,b_2 ,c_2 ))≠ 0 right?
Sirifthevectors(a1b1c1)and(a2b2c3)arelinearlyindependent,then|a1b1c1a2b2c2|0right?
Commented by Rio Michael last updated on 11/Mar/20
thanks sir i got it
thankssirigotit
Commented by MJS last updated on 11/Mar/20
yes and no  vectors are  ((a_1 ),(b_1 ) ) and  ((a_2 ),(b_2 ) ) because we′re in  R^2  and determinants only exist for n×n  matrices  if  determinant ((a_1 ,a_2 ),(b_1 ,b_2 ))≠0 the vectors are independent
yesandnovectorsare(a1b1)and(a2b2)becausewereinR2anddeterminantsonlyexistforn×nmatricesif|a1a2b1b2|0thevectorsareindependent
Commented by Rio Michael last updated on 12/Mar/20
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *