Menu Close

why-any-infinitely-differentiable-function-is-a-power-series-mathematically-if-f-x-is-A-infinitely-differentiable-function-then-why-f-x-ax-0-bx-1-cx-2-dx-3-ex-4-for-example-sin-x-x-x




Question Number 21270 by Nayon last updated on 18/Sep/17
why any infinitely differentiable   function is a power series?  mathematically,  if f(x) is A infinitely differentiable  function then why  f(x)=ax^0 +bx^1 +cx^2 +dx^3 +ex^4 +.....  for example  sin(x)=x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+.....up to∞
$$\mathrm{why}\:\mathrm{any}\:\mathrm{infinitely}\:\mathrm{differentiable}\: \\ $$$$\mathrm{function}\:\mathrm{is}\:\mathrm{a}\:\mathrm{power}\:\mathrm{series}? \\ $$$${mathematically}, \\ $$$${if}\:{f}\left({x}\right)\:{is}\:{A}\:{infinitely}\:{differentiable} \\ $$$${function}\:{then}\:{why} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{0}} +{bx}^{\mathrm{1}} +{cx}^{\mathrm{2}} +{dx}^{\mathrm{3}} +{ex}^{\mathrm{4}} +….. \\ $$$${for}\:{example} \\ $$$${sin}\left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+…..{up}\:{to}\infty \\ $$$$ \\ $$
Commented by Nayon last updated on 18/Sep/17
pls some one clearify it ..
$${pls}\:{some}\:{one}\:{clearify}\:{it}\:.. \\ $$
Commented by 1kanika# last updated on 26/Nov/17
Because by the Taylor series expansion.
$$\mathrm{Because}\:\mathrm{by}\:\mathrm{the}\:\mathrm{Taylor}\:\mathrm{series}\:\mathrm{expansion}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *