Menu Close

why-can-t-we-differentiate-or-intergrate-powers-of-trigonometric-functions-such-as-1-cos-2-xdx-3-tan-2-2xdx-2-sin-2-xdx-4-sin-10-x-hence-how-do-we-solve-such-problems-




Question Number 64017 by Rio Michael last updated on 12/Jul/19
why can′t we differentiate or intergrate powers of trigonometric  functions such as   1) ∫cos^2 xdx?    3) ∫tan^2 2xdx  2)∫sin^2 xdx?     4) ∫sin^(10) x  hence how do we solve such problems.?
$${why}\:{can}'{t}\:{we}\:{differentiate}\:{or}\:{intergrate}\:{powers}\:{of}\:{trigonometric} \\ $$$${functions}\:{such}\:{as}\: \\ $$$$\left.\mathrm{1}\left.\right)\:\int{cos}^{\mathrm{2}} {xdx}?\:\:\:\:\mathrm{3}\right)\:\int{tan}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$$\left.\mathrm{2}\left.\right)\int{sin}^{\mathrm{2}} {xdx}?\:\:\:\:\:\mathrm{4}\right)\:\int{sin}^{\mathrm{10}} {x} \\ $$$${hence}\:{how}\:{do}\:{we}\:{solve}\:{such}\:{problems}.? \\ $$
Commented by kaivan.ahmadi last updated on 12/Jul/19
cos2x=2cos^2 x−1⇒cos^2 x=((1+cos2x)/2)  ∫cos^2 xdx=∫((1+cos2x)/2)dx=(1/2)∫(1+cos2x)dx=  (1/2)(x+(1/2)sin2x)+C
$${cos}\mathrm{2}{x}=\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}\Rightarrow{cos}^{\mathrm{2}} {x}=\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\int{cos}^{\mathrm{2}} {xdx}=\int\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}+{cos}\mathrm{2}{x}\right){dx}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}\right)+{C} \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 12/Jul/19
cos2x=1−2sin^2 x⇒sin^2 x=((1−cos2x)/2)  ∫sin^2 xdx=(1/2)∫(1−cos2x)dx=  (1/2)(x−(1/2)sin2x)+C
$${cos}\mathrm{2}{x}=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {x}\Rightarrow{sin}^{\mathrm{2}} {x}=\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\int{sin}^{\mathrm{2}} {xdx}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−{cos}\mathrm{2}{x}\right){dx}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}\right)+{C} \\ $$
Commented by kaivan.ahmadi last updated on 12/Jul/19
∫tan^2 2xdx=∫(1+tan^2 2x−1)dx=(1/2)tan2x−x+C
$$\int{tan}^{\mathrm{2}} \mathrm{2}{xdx}=\int\left(\mathrm{1}+{tan}^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}{tan}\mathrm{2}{x}−{x}+{C} \\ $$
Commented by MJS last updated on 12/Jul/19
look at qu. 64037
$$\mathrm{look}\:\mathrm{at}\:\mathrm{qu}.\:\mathrm{64037} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *