Menu Close

With-reference-to-figure-of-a-cube-of-edge-a-and-mass-m-state-whether-the-following-are-true-or-false-O-is-the-centre-of-the-cube-1-The-moment-of-inertia-of-cube-about-z-axis-is-I-z-I-x-




Question Number 25013 by Tinkutara last updated on 01/Dec/17
With reference to figure of a cube of  edge a and mass m, state whether the  following are true or false. (O is the  centre of the cube.)  (1) The moment of inertia of cube  about z-axis is, I_z  = I_x  + I_y   (2) The moment of inertia of cube  about z′ is, I_(z′)  = I_z  + ((ma^2 )/2)  (3) The moment of inertia of cube  about z′′ is, I_(z′)  = I_z  + ((ma^2 )/2)  (4) I_x  = I_y
$$\mathrm{With}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{figure}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{of} \\ $$$$\mathrm{edge}\:{a}\:\mathrm{and}\:\mathrm{mass}\:{m},\:\mathrm{state}\:\mathrm{whether}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{are}\:\mathrm{true}\:\mathrm{or}\:\mathrm{false}.\:\left(\mathrm{O}\:\mathrm{is}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}.\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}-\mathrm{axis}\:\mathrm{is},\:{I}_{{z}} \:=\:{I}_{{x}} \:+\:{I}_{{y}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}'\:\mathrm{is},\:{I}_{{z}'} \:=\:{I}_{{z}} \:+\:\frac{{ma}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}''\:\mathrm{is},\:{I}_{{z}'} \:=\:{I}_{{z}} \:+\:\frac{{ma}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:{I}_{{x}} \:=\:{I}_{{y}} \\ $$
Commented by Tinkutara last updated on 01/Dec/17
Commented by ajfour last updated on 01/Dec/17
I_Z =((ma^2 )/6) ,   I_(Z ′) =((ma^2 )/6)+((ma^2 )/2)=((2ma^2 )/3)  I_X =I_Y =((ma^2 )/6)+((ma^2 )/4)=((5ma^2 )/(12))  I_(Z ′′) = ? .....
$${I}_{{Z}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}}\:,\:\:\:{I}_{{Z}\:'} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}}+\frac{{ma}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{2}{ma}^{\mathrm{2}} }{\mathrm{3}} \\ $$$${I}_{{X}} ={I}_{{Y}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}}+\frac{{ma}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{5}{ma}^{\mathrm{2}} }{\mathrm{12}} \\ $$$${I}_{{Z}\:''} =\:?\:….. \\ $$
Commented by Tinkutara last updated on 02/Dec/17
How I_z =((ma^2 )/6)?
$${How}\:{I}_{{z}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *