Menu Close

with-the-use-of-mathematical-induction-show-that-n-gt-2n-3-n-6-




Question Number 115417 by toa last updated on 25/Sep/20
with the use of mathematical induction  show that n!>2n^3 , ∀n≥6.
withtheuseofmathematicalinductionshowthatn!>2n3,n6.
Answered by TANMAY PANACEA last updated on 25/Sep/20
when n=6  6!=720    2×6^3 =432   n!>2n^3   when n=6  let when n=p, the given statment is true  p!>2p^3   we have to prove that  (p+1)!>2(p+1)^3   now  (p+1)p!−2(p+1)^3   (p+1){p!−2(p+1)^2 }  let assume p!=2p^3 +δ→δ is positive value  (p+1){2p^3 +δ−2(p+1)^2 }  (p+1)[2{(p^3 −(p+1)^2 }+δ] →is positive  because when p≥6  p^3 >(p+1)^2     pls check
whenn=66!=7202×63=432n!>2n3whenn=6letwhenn=p,thegivenstatmentistruep!>2p3wehavetoprovethat(p+1)!>2(p+1)3now(p+1)p!2(p+1)3(p+1){p!2(p+1)2}letassumep!=2p3+δδispositivevalue(p+1){2p3+δ2(p+1)2}(p+1)[2{(p3(p+1)2}+δ]ispositivebecausewhenp6p3>(p+1)2plscheck
Answered by MWSuSon last updated on 25/Sep/20
Base case(n=6): 6!=720>2×6^3 =432  Inductive step{Goal: (n+1)!>2(n+1)^3 }  suppose k≥6 and k!>2k^3   Observe that (k+1)!=(k+1)k!                                                 >(k+1)2k^3                                              =k(2k^3 )+2k^3                                           =k(2k^3 )+(k^3 +k^3 )   (observe that ∀ k≥6, k^3 ≥6k^2 >6k+2)                                 >k(2k^3 )+(6k^2 +6k+2)                                             >2k^3 +6k^2 +6k+2                                                   =2(k+1)^3   Therefore n!>2n^3     (verify if this is logical)
Basecase(n=6):6!=720>2×63=432Inductivestep{Goal:(n+1)!>2(n+1)3}supposek6andk!>2k3Observethat(k+1)!=(k+1)k!>(k+1)2k3=k(2k3)+2k3=k(2k3)+(k3+k3)(observethatk6,k36k2>6k+2)>k(2k3)+(6k2+6k+2)>2k3+6k2+6k+2=2(k+1)3Thereforen!>2n3(verifyifthisislogical)

Leave a Reply

Your email address will not be published. Required fields are marked *