Menu Close

withiout-using-calculator-find-approximate-for-9-01-




Question Number 44291 by peter frank last updated on 25/Sep/18
withiout using calculator find approximate for  (√(9.01))
withioutusingcalculatorfindapproximatefor9.01
Commented by maxmathsup by imad last updated on 25/Sep/18
(√(9,01))=(√(9+0,01))=(√(9+10^(−2) ))=3(√(1+((10^(−2) )/9)))  but for x ∈ v(0)  (√(1+x)) ∼ 1+(x/2) ⇒(√(1+((10^(−2) )/9))) ∼1+((10^(−2) )/(18)) ⇒(√(9,01)) ∼3( 1+((10^(−2) )/(18))) ⇒  (√(9,01)) ∼3 +((10^(−2) )/6)  ...
9,01=9+0,01=9+102=31+1029butforxv(0)1+x1+x21+10291+102189,013(1+10218)9,013+1026
Commented by Joel578 last updated on 26/Sep/18
Sir please explain  (√(1 + x))  ∼ 1 + (x/2)
Sirpleaseexplain1+x1+x2
Commented by Necxx last updated on 26/Sep/18
its linear approximation
itslinearapproximation
Commented by abdo.msup.com last updated on 26/Sep/18
f(x) =f(0) +(x/(1!))f^′ (0) +(x^2 /2)ξ(x) with  lim_(x→0) ξ(x)=0 ⇒f(x) ∼f(0) +xf^′ (x)(x→0)  let take f(x)=(√(1+x)) ⇒f(0)=1 and  f^′ (x)=(1/(2(√(x+1)))) ⇒f^′ (0) =(1/2) ⇒  f(x) ∼1+(x/2) .
f(x)=f(0)+x1!f(0)+x22ξ(x)withlimx0ξ(x)=0f(x)f(0)+xf(x)(x0)lettakef(x)=1+xf(0)=1andf(x)=12x+1f(0)=12f(x)1+x2.
Commented by maxmathsup by imad last updated on 26/Sep/18
f(x)∼f(0) +x f^′ (0) (x→0)
f(x)f(0)+xf(0)(x0)
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
y=(√x)   (dy/dx)=(1/(2(√x)))  here  x=9   x+△x=9.01   △x=0.01  y=(√9) =3   y+△y=to find  ((△y)/(△x))≈(dy/dx)  (dy/dx)=((△y)/(△x))  △y=(dy/dx)△x  △y=(1/(2(√9)))×0.01=((0.01)/6)=(1/6)×(1/(100))≈0.1666×(1/(100))=0.0016666  (√(9.01)) =3.0016666
y=xdydx=12xherex=9x+x=9.01x=0.01y=9=3y+y=tofindyxdydxdydx=yxy=dydxxy=129×0.01=0.016=16×11000.1666×1100=0.00166669.01=3.0016666

Leave a Reply

Your email address will not be published. Required fields are marked *