Menu Close

withiout-using-calculator-find-approximate-for-9-01-




Question Number 44291 by peter frank last updated on 25/Sep/18
withiout using calculator find approximate for  (√(9.01))
$${withiout}\:{using}\:{calculator}\:{find}\:{approximate}\:{for} \\ $$$$\sqrt{\mathrm{9}.\mathrm{01}} \\ $$
Commented by maxmathsup by imad last updated on 25/Sep/18
(√(9,01))=(√(9+0,01))=(√(9+10^(−2) ))=3(√(1+((10^(−2) )/9)))  but for x ∈ v(0)  (√(1+x)) ∼ 1+(x/2) ⇒(√(1+((10^(−2) )/9))) ∼1+((10^(−2) )/(18)) ⇒(√(9,01)) ∼3( 1+((10^(−2) )/(18))) ⇒  (√(9,01)) ∼3 +((10^(−2) )/6)  ...
$$\sqrt{\mathrm{9},\mathrm{01}}=\sqrt{\mathrm{9}+\mathrm{0},\mathrm{01}}=\sqrt{\mathrm{9}+\mathrm{10}^{−\mathrm{2}} }=\mathrm{3}\sqrt{\mathrm{1}+\frac{\mathrm{10}^{−\mathrm{2}} }{\mathrm{9}}}\:\:{but}\:{for}\:{x}\:\in\:{v}\left(\mathrm{0}\right) \\ $$$$\sqrt{\mathrm{1}+{x}}\:\sim\:\mathrm{1}+\frac{{x}}{\mathrm{2}}\:\Rightarrow\sqrt{\mathrm{1}+\frac{\mathrm{10}^{−\mathrm{2}} }{\mathrm{9}}}\:\sim\mathrm{1}+\frac{\mathrm{10}^{−\mathrm{2}} }{\mathrm{18}}\:\Rightarrow\sqrt{\mathrm{9},\mathrm{01}}\:\sim\mathrm{3}\left(\:\mathrm{1}+\frac{\mathrm{10}^{−\mathrm{2}} }{\mathrm{18}}\right)\:\Rightarrow \\ $$$$\sqrt{\mathrm{9},\mathrm{01}}\:\sim\mathrm{3}\:+\frac{\mathrm{10}^{−\mathrm{2}} }{\mathrm{6}}\:\:… \\ $$
Commented by Joel578 last updated on 26/Sep/18
Sir please explain  (√(1 + x))  ∼ 1 + (x/2)
$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{explain}\:\:\sqrt{\mathrm{1}\:+\:{x}}\:\:\sim\:\mathrm{1}\:+\:\frac{{x}}{\mathrm{2}} \\ $$
Commented by Necxx last updated on 26/Sep/18
its linear approximation
$${its}\:{linear}\:{approximation} \\ $$
Commented by abdo.msup.com last updated on 26/Sep/18
f(x) =f(0) +(x/(1!))f^′ (0) +(x^2 /2)ξ(x) with  lim_(x→0) ξ(x)=0 ⇒f(x) ∼f(0) +xf^′ (x)(x→0)  let take f(x)=(√(1+x)) ⇒f(0)=1 and  f^′ (x)=(1/(2(√(x+1)))) ⇒f^′ (0) =(1/2) ⇒  f(x) ∼1+(x/2) .
$${f}\left({x}\right)\:={f}\left(\mathrm{0}\right)\:+\frac{{x}}{\mathrm{1}!}{f}^{'} \left(\mathrm{0}\right)\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\xi\left({x}\right)\:{with} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \xi\left({x}\right)=\mathrm{0}\:\Rightarrow{f}\left({x}\right)\:\sim{f}\left(\mathrm{0}\right)\:+{xf}^{'} \left({x}\right)\left({x}\rightarrow\mathrm{0}\right) \\ $$$${let}\:{take}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}}\:\Rightarrow{f}\left(\mathrm{0}\right)=\mathrm{1}\:{and} \\ $$$${f}^{'} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{1}}}\:\Rightarrow{f}^{'} \left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:\sim\mathrm{1}+\frac{{x}}{\mathrm{2}}\:. \\ $$
Commented by maxmathsup by imad last updated on 26/Sep/18
f(x)∼f(0) +x f^′ (0) (x→0)
$${f}\left({x}\right)\sim{f}\left(\mathrm{0}\right)\:+{x}\:{f}^{'} \left(\mathrm{0}\right)\:\left({x}\rightarrow\mathrm{0}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
y=(√x)   (dy/dx)=(1/(2(√x)))  here  x=9   x+△x=9.01   △x=0.01  y=(√9) =3   y+△y=to find  ((△y)/(△x))≈(dy/dx)  (dy/dx)=((△y)/(△x))  △y=(dy/dx)△x  △y=(1/(2(√9)))×0.01=((0.01)/6)=(1/6)×(1/(100))≈0.1666×(1/(100))=0.0016666  (√(9.01)) =3.0016666
$${y}=\sqrt{{x}}\: \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}} \\ $$$${here}\:\:{x}=\mathrm{9}\:\:\:{x}+\bigtriangleup{x}=\mathrm{9}.\mathrm{01}\:\:\:\bigtriangleup{x}=\mathrm{0}.\mathrm{01} \\ $$$${y}=\sqrt{\mathrm{9}}\:=\mathrm{3}\:\:\:{y}+\bigtriangleup{y}={to}\:{find} \\ $$$$\frac{\bigtriangleup{y}}{\bigtriangleup{x}}\approx\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\bigtriangleup{y}}{\bigtriangleup{x}} \\ $$$$\bigtriangleup{y}=\frac{{dy}}{{dx}}\bigtriangleup{x} \\ $$$$\bigtriangleup{y}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{9}}}×\mathrm{0}.\mathrm{01}=\frac{\mathrm{0}.\mathrm{01}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{1}}{\mathrm{100}}\approx\mathrm{0}.\mathrm{1666}×\frac{\mathrm{1}}{\mathrm{100}}=\mathrm{0}.\mathrm{0016666} \\ $$$$\sqrt{\mathrm{9}.\mathrm{01}}\:=\mathrm{3}.\mathrm{0016666} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *