Menu Close

Without-L-Hopital-rule-lim-x-pi-4-2-cos-x-1-cot-x-1-




Question Number 145363 by imjagoll last updated on 04/Jul/21
 Without L′Hopital rule   lim_(x→π/4)  (((√2) cos x−1)/(cot x−1)) =?
WithoutLHopitalrulelimxπ/42cosx1cotx1=?
Answered by liberty last updated on 04/Jul/21
 lim_(x→(π/4))  (((√2)cos x−1)/(cot x−1))   = lim_(x→(π/4))  ((((√2)cos x−1)sin x)/(cos x−sin x)).((((√2)cos x+1))/( (√2)cos x+1)).((cos x+sin x)/(cos x+sin x))  = lim_(x→(π/4))  (((2cos^2 x−1))/(cos^2 x−sin^2 x)).((cos x+sin x)/( (√2)cos x+1)).sin x  = (((1/( (√2)))+(1/( (√2))))/( (√2) .(1/( (√2)))+1)).(1/( (√2))) = ((2/( (√2)))/2).(1/( (√2)))=(1/2)
limxπ42cosx1cotx1=limxπ4(2cosx1)sinxcosxsinx.(2cosx+1)2cosx+1.cosx+sinxcosx+sinx=limxπ4(2cos2x1)cos2xsin2x.cosx+sinx2cosx+1.sinx=12+122.12+1.12=222.12=12
Answered by puissant last updated on 04/Jul/21
=lim_(x→(π/4))   ((−(√2)sin(x))/(−(1/(sin^2 (x)))))  =  lim_(x→(π/4))  −(((√2)sin(x))/1)×(−sin^2 (x))  =lim_(x→(π/4))  ((√2)sin(x))×lim_(x→(π/4))  ((1/2)(1−cos(2x)))  =1×(1/2)=  (1/2)....
=limxπ42sin(x)1sin2(x)=limxπ42sin(x)1×(sin2(x))=limxπ4(2sin(x))×limxπ4(12(1cos(2x)))=1×12=12.
Answered by Olaf_Thorendsen last updated on 04/Jul/21
lim_(x→(π/4))  (((√2)cosx−1)/(cotx−1))  lim_(u→0)  (((√2)cos((π/4)−u)−1)/((((√2)cos((π/4)−u))/( (√2)sin((π/4)−u)))−1))  lim_(u→0)  ((cosu+sinu−1)/(((cosu+sinu)/( cosu−sinu))−1))  lim_(u→0)  ((1−(u^2 /2)+u−1)/(((1−(u^2 /2)+u)/( 1−(u^2 /2)−u))−1))  lim_(u→0)  ((u−(u^2 /2))/((1−(u^2 /2)+u−1+u+(u^2 /2))/( 1−(u^2 /2)−u)))  lim_(u→0)  ((u−(u^2 /2))/((2u)/( 1−(u^2 /2)−u)))  lim_(u→0)  ((1−(u/2))/2)×(1−u−(u^2 /2)) = (1/2)
limxπ42cosx1cotx1limu02cos(π4u)12cos(π4u)2sin(π4u)1limu0cosu+sinu1cosu+sinucosusinu1limu01u22+u11u22+u1u22u1limu0uu221u22+u1+u+u221u22ulimu0uu222u1u22ulimu01u22×(1uu22)=12

Leave a Reply

Your email address will not be published. Required fields are marked *