Menu Close

without-use-intergration-by-party-0-pi-4-e-cos-2-d-




Question Number 89560 by peter frank last updated on 18/Apr/20
without use intergration  by party  ∫_0 ^(π/4) e^θ cos 2θ dθ
withoutuseintergrationbyparty0π4eθcos2θdθ
Commented by mathmax by abdo last updated on 18/Apr/20
∫_0 ^(π/4)  e^θ  cos(2θ)dθ =Re(∫_0 ^(π/4)  e^(θ+2iθ)  dθ) and  ∫_0 ^(π/4)  e^((1+2i)θ)  dθ =[(1/(1+2i))e^((1+2i)θ) ]_0 ^(π/4)  =(1/(1+2i)){e^((1+2i)(π/4)) −1}  =(((1−2i))/5)(e^(π/4)  i−1) =(1/5)(e^(π/4) i−1+2e^(π/4)  +2i) ⇒  ∫_0 ^(π/4)  e^θ  cos(2θ)dθ =((2e^(π/4) −1)/5)
0π4eθcos(2θ)dθ=Re(0π4eθ+2iθdθ)and0π4e(1+2i)θdθ=[11+2ie(1+2i)θ]0π4=11+2i{e(1+2i)π41}=(12i)5(eπ4i1)=15(eπ4i1+2eπ4+2i)0π4eθcos(2θ)dθ=2eπ415

Leave a Reply

Your email address will not be published. Required fields are marked *