Menu Close

Without-using-l-hopital-find-lim-x-3-9-x-2-x-3-




Question Number 39078 by Cheyboy last updated on 02/Jul/18
Without using l′hopital  find    lim_(x→3)  ((√(9−x^2 ))/(x−3))
Withoutusinglhopitalfindlimx39x2x3
Commented by math khazana by abdo last updated on 03/Jul/18
lim_(x→3^− )   ((√(9−x^2 ))/(x−3))  =lim_(x→3^− )   −((√(9−x^2 ))/(3−x))     =lim_(x→3^− )    −(√((9−x^2 )/((3−x)^2 )))=lim_(x→3^− )   −(√((3+x)/(3−x)))  = −∞ .
limx39x2x3=limx39x23x=limx39x2(3x)2=limx33+x3x=.
Commented by orlandorap123 last updated on 03/Aug/18
    lim_(x→3)  ((√(9−x^2 ))/(x−3))   lim_(x→3) (((3−x)(3+x))/(−(x−3)(√(9−x^2 ))))  lim_(x→3) (((3+x))/(−(√(9−x^2 ))))  evaluando  lim_(x→3) (((6))/(−0))=−∞  find    lim_(x→3)  ((√(9−x^2 ))/(x−3))=−∞
limx39x2x3limx3(3x)(3+x)(x3)9x2limx3(3+x)9x2evaluandolimx3(6)0=findlimx39x2x3=
Answered by ajfour last updated on 02/Jul/18
left hand limit= lim_(h→0) ((√(9−(3−h)^2 ))/((3−h)−3))       =lim_(h→0) ((√(6h−h^2 ))/(−h)) = −∞
lefthandlimit=limh09(3h)2(3h)3=limh06hh2h=
Commented by Cheyboy last updated on 02/Jul/18
Thank you sir
Thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *