Menu Close

without-using-lohpital-find-lim-x-pi-6-1-2sinx-cos-3x-




Question Number 31246 by malwaan last updated on 04/Mar/18
without using lohpital  find  lim_(x→π/6)  ((1−2sinx)/(cos 3x))
withoutusinglohpitalfindlimxπ/612sinxcos3x
Commented by malwaan last updated on 04/Mar/18
please  I need the answer very soon
pleaseIneedtheanswerverysoon
Commented by prof Abdo imad last updated on 04/Mar/18
ch x=(π/6)−t give  lim_(x→(π/6))  ((1−2sinx)/(cos(3x)))=lim_(t→0)   ((1−2sin((π/6)−t))/(cos((π/2)−3t)))  =lim_(t→0)   ((1−2((1/2)cost −((√3)/2)sint))/(sin(3t)))  =lim_(t→0)   ((1−cost +(√3) sint)/(sin(3t))) but  lim_(t→0)  ((1−cost)/(sin(3t))) =lim_(t→0)      (((1−cost)/t)/((3 sin(3t))/(3t)))=(0/3)=0 and  lim_(t→0)    (((√3) sint)/(sin(3t)))=lim_(t→0)      (√3)  (((sint)/t)/((3sin(3t))/(3t))) = ((√3)/3) .
chx=π6tgivelimxπ612sinxcos(3x)=limt012sin(π6t)cos(π23t)=limt012(12cost32sint)sin(3t)=limt01cost+3sintsin(3t)butlimt01costsin(3t)=limt01costt3sin(3t)3t=03=0andlimt03sintsin(3t)=limt03sintt3sin(3t)3t=33.
Answered by naka3546 last updated on 04/Mar/18
Commented by malwaan last updated on 05/Mar/18
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *