Menu Close

Without-using-tables-find-tha-value-of-5-2-6-5-2-6-8-5-




Question Number 51235 by peter frank last updated on 25/Dec/18
Without using tables,  find tha value of  ((((√5) +2)^6 −((√5)−2)^6 )/(8(√5) ))
Withoutusingtables,findthavalueof(5+2)6(52)685
Answered by mr W last updated on 25/Dec/18
let a=(√5)+2  (√5)−2=(1/( (√5)+2))=(1/a)  a^6 −(1/a^6 )=(a^3 +(1/a^3 ))(a^3 −(1/a^3 ))=(a+(1/a))(a^2 +(1/a^2 )−1)(a−(1/a))(a^2 +(1/a^2 )+1)  =(a^2 −(1/a^2 ))[(a^2 +(1/a^2 ))^2 −1]  =(8(√5))(18^2 −1)  ⇒((((√5) +2)^6 −((√5)−2)^6 )/(8(√5) ))=18^2 −1    =17×19=323
leta=5+252=15+2=1aa61a6=(a3+1a3)(a31a3)=(a+1a)(a2+1a21)(a1a)(a2+1a2+1)=(a21a2)[(a2+1a2)21]=(85)(1821)(5+2)6(52)685=1821=17×19=323
Commented by peter frank last updated on 25/Dec/18
much respect sir nice work
muchrespectsirnicework
Commented by malwaan last updated on 25/Dec/18
great work
greatwork
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18
(a+b)^6 =a^6 +6c_1 a^5 b+6c_2 a^4 b^2 +6c_3 a^3 b^3 +6c_4 a^2 b^4 +6c_5 ab^5 +b^6   (a−b)^6 =a^6 −6c_1 a^5 b+6c_2 a^4 b^2 −6c_3 a^3 b^3 +6c_4 a^2 b^4 −6c_5 ab^5 +b^6   (a+b)^6 −(a−b)^6   =2[6c_1 a^5 b+6c_3 a^3 b^3 +6c_5 ab^5 ]  =2[6a^5 b+20a^3 b^3 +6ab^5 ]  =12((√5) )^5 (2)+40((√5) )^3 (2)^3 +12((√5) )(2)^5   =12×2×25×(√5) +40×8×5(√5) +32×12×(√5)   =8(√5) (75+200+48)  ans is 75+200+48=323
(a+b)6=a6+6c1a5b+6c2a4b2+6c3a3b3+6c4a2b4+6c5ab5+b6(ab)6=a66c1a5b+6c2a4b26c3a3b3+6c4a2b46c5ab5+b6(a+b)6(ab)6=2[6c1a5b+6c3a3b3+6c5ab5]=2[6a5b+20a3b3+6ab5]=12(5)5(2)+40(5)3(2)3+12(5)(2)5=12×2×25×5+40×8×55+32×12×5=85(75+200+48)ansis75+200+48=323
Commented by peter frank last updated on 25/Dec/18
perfect sir.binomial expansion   i hesitate to apply that   method
perfectsir.binomialexpansionihesitatetoapplythatmethod

Leave a Reply

Your email address will not be published. Required fields are marked *