Menu Close

Without-using-tables-or-calculator-compare-6-7-and-7-6-




Question Number 105301 by Don08q last updated on 27/Jul/20
Without using tables or calculator,   compare   6^7  and   7^6
Withoutusingtablesorcalculator,compare67and76
Answered by 1549442205PVT last updated on 28/Jul/20
(6^7 /7^6 )=6×((6/7))^6 >6×((4/5))^6 =6×(((64)/(125)))^2   >6×(((64)/(128)))^2 =6×((1/2))^2 =(6/4)>1  ⇒6^7 >7^6
6776=6×(67)6>6×(45)6=6×(64125)2>6×(64128)2=6×(12)2=64>167>76
Commented by Don08q last updated on 28/Jul/20
Thank you Sir!
ThankyouSir!
Answered by JDamian last updated on 27/Jul/20
7^6 =(6+1)^6 =       = 6^6 +6∙6^5 +15∙6^4 +20∙6^3 +15∙6^2 +6∙6^1 +1=       = 2∙6^6 +15∙6^4 +20∙6^3 +15∙6^2 +6∙6^1 +1=       = 2∙6^6 +15∙6^4 +20∙6^3 +16∙6^2 +1    If we divide both quantities under test by 6^6 :  (6^7 /6^6 ) = 6  (7^6 /6^6 ) = 2 + ((15)/6^2 ) + ((20)/6^3 ) + ((16)/6^4 ) + (1/6^6 )    6 > 2 + ((15)/6^2 ) + ((20)/6^3 ) + ((16)/6^4 ) + (1/6^6 )  4 > ((15)/6^2 ) + ((20)/6^3 ) + ((16)/6^4 ) + (1/6^6 )  Therefore     6^7 >7^6
76=(6+1)6==66+665+1564+2063+1562+661+1==266+1564+2063+1562+661+1==266+1564+2063+1662+1Ifwedividebothquantitiesundertestby66:6766=67666=2+1562+2063+1664+1666>2+1562+2063+1664+1664>1562+2063+1664+166Therefore67>76
Commented by Don08q last updated on 27/Jul/20
Excellent. Thank you Sir.
Excellent.ThankyouSir.
Commented by malwaan last updated on 27/Jul/20
((15)/6^2 )<(1/2) <1 ;  ((20)/6^3 )<(1/(10)) <1   ((16)/6^4 ) = (1/(81)) ≪ 1; (1/6^6 ) ≪ 1  thank you sir JDamian
1562<12<1;2063<110<11664=1811;1661thankyousirJDamian
Answered by mathmax by abdo last updated on 27/Jul/20
for x and y naturels and x>y let compare x^y  and y^x   ⇒let compare ln(x^y ) and ln(y^x )(ln is increazing function..)  let ϕ(x) =ylnx−xlny   for y fixed we have  y≥1 and x∈]y,+∞[  ϕ(y) =0 and lim_(x→+∞) ϕ(x) =lim_(x→+∞) x(y((lnx)/x)−lny) =−∞  ϕ^′ (x) =(y/x)−lny ⇒ϕ^(′′) (x) =−(y/x^2 )<0 ⇒ϕ^′  is decreazing  and  ϕ^′ (y) =1−lny <0 ⇒ϕ is decreazing ⇒ϕ(x)<0 ⇒  ylnx−xlny <0 ⇒ylnx<xlny ⇒x^y <y^x   x=7 and y =6  x>y ⇒x^y <y^x  ⇒7^6 <6^7
forxandynaturelsandx>yletcomparexyandyxletcompareln(xy)andln(yx)(lnisincreazingfunction..)letφ(x)=ylnxxlnyforyfixedwehavey1andx]y,+[φ(y)=0andlimx+φ(x)=limx+x(ylnxxlny)=φ(x)=yxlnyφ(x)=yx2<0φisdecreazingandφ(y)=1lny<0φisdecreazingφ(x)<0ylnxxlny<0ylnx<xlnyxy<yxx=7andy=6x>yxy<yx76<67
Commented by Don08q last updated on 28/Jul/20
Thank you Sir!
ThankyouSir!
Commented by abdomsup last updated on 28/Jul/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *