Menu Close

Witthout-using-mathematical-tables-or-calculator-find-in-surdform-radicals-the-value-tan22-5-




Question Number 59305 by pete last updated on 07/May/19
Witthout using mathematical tables or  calculator, find,in surdform(radicals)  , the value tan22.5°
$$\mathrm{Witthout}\:\mathrm{using}\:\mathrm{mathematical}\:\mathrm{tables}\:\mathrm{or} \\ $$$$\mathrm{calculator},\:\mathrm{find},\mathrm{in}\:\mathrm{surdform}\left(\mathrm{radicals}\right) \\ $$$$,\:\mathrm{the}\:\mathrm{value}\:\mathrm{tan22}.\mathrm{5}° \\ $$
Answered by ajfour last updated on 07/May/19
tan 2θ=((2tan θ)/(1−tan^2 θ))  let  θ=22.5°    ,tan θ= tan 22.5°= q  ⇒   1=((2q)/(1−q^2 ))  ⇒  q^2 +2q+1=2  ⇒   q= (√2)−1 .
$$\mathrm{tan}\:\mathrm{2}\theta=\frac{\mathrm{2tan}\:\theta}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \theta} \\ $$$$\mathrm{let}\:\:\theta=\mathrm{22}.\mathrm{5}°\:\:\:\:,\mathrm{tan}\:\theta=\:\mathrm{tan}\:\mathrm{22}.\mathrm{5}°=\:\mathrm{q} \\ $$$$\Rightarrow\:\:\:\mathrm{1}=\frac{\mathrm{2q}}{\mathrm{1}−\mathrm{q}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\mathrm{q}^{\mathrm{2}} +\mathrm{2q}+\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow\:\:\:\mathrm{q}=\:\sqrt{\mathrm{2}}−\mathrm{1}\:. \\ $$
Commented by pete last updated on 08/May/19
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Answered by malwaan last updated on 08/May/19
tan(θ/2)=±(√((1−cosθ)/(1+sinθ)))  tan22.5=tan((45)/2)=+(√((1−cos 45^° )/(1+cos 45^° )))  (√((1−((√2)/2))/(1+((√2)/2))))=(√((2−(√2))/(2+(√2))))  =(√(((2−(√2))^2 )/(4−2)))=((2−(√2))/( (√2)))  =((2(√2)−2)/2)=(√2)−1
$${tan}\frac{\theta}{\mathrm{2}}=\pm\sqrt{\frac{\mathrm{1}−{cos}\theta}{\mathrm{1}+{sin}\theta}} \\ $$$${tan}\mathrm{22}.\mathrm{5}={tan}\frac{\mathrm{45}}{\mathrm{2}}=+\sqrt{\frac{\mathrm{1}−{cos}\:\mathrm{45}^{°} }{\mathrm{1}+{cos}\:\mathrm{45}^{°} }} \\ $$$$\sqrt{\frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}}=\sqrt{\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$$=\sqrt{\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{4}−\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$
Commented by pete last updated on 11/May/19
Thank you boss
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{boss} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *