Menu Close

Write-down-a-series-expansion-for-ln-1-2x-1-2x-2-in-ascending-powers-of-x-up-to-and-including-the-term-in-x-4-if-x-is-small-that-terms-in-x-2-and-higher-powers-are-negleted-show-that




Question Number 83297 by Rio Michael last updated on 29/Feb/20
Write down a series expansion for    ln [((1−2x)/((1+2x)^2 ))] in ascending powers of x   up to and including the term in x^4 .   if x is small that terms in x^2  and higher powers  are negleted show that   (((1−2x)/(1+2x)))^(1/(2x))  ≅ (1 + x)e^(−3)
Writedownaseriesexpansionforln[12x(1+2x)2]inascendingpowersofxuptoandincludingtheterminx4.ifxissmallthattermsinx2andhigherpowersarenegletedshowthat(12x1+2x)12x(1+x)e3
Commented by mr W last updated on 29/Feb/20
question is wrong again. please check!  maybe it is (((1−2x)/((1+2x)^2 )))^(1/(2x))  ≅ (1 + x)e^(−3)
questioniswrongagain.pleasecheck!maybeitis(12x(1+2x)2)12x(1+x)e3
Answered by mr W last updated on 29/Feb/20
ln [((1−2x)/((1+2x)^2 ))]=ln (1−2x)−2 ln (1+2x)  =(−2x)−(((−2x)^2 )/2)+(((−2x)^3 )/3)−...  −2[(2x)−(((2x)^2 )/2)+(((2x)^3 )/3)−...]  =−6x+2x^2 −8x^3 +o(x^3 )  (1/(2x))ln [((1−2x)/((1+2x)^2 ))]=−3+x−4x^2 +o(x^2 )    (((1−2x)/((1+2x)^2 )))^(1/(2x)) =e^((1/(2x))ln ((1−2x)/((1+2x)^2 ))) =e^(−3+x−4x^2 +o(x^2 ))   =e^(−3) e^(x−4x^2 +o(x^2 ))   =e^(−3) (1+x+o(x))  ≈e^(−3) (1+x)
ln[12x(1+2x)2]=ln(12x)2ln(1+2x)=(2x)(2x)22+(2x)332[(2x)(2x)22+(2x)33]=6x+2x28x3+o(x3)12xln[12x(1+2x)2]=3+x4x2+o(x2)(12x(1+2x)2)12x=e12xln12x(1+2x)2=e3+x4x2+o(x2)=e3ex4x2+o(x2)=e3(1+x+o(x))e3(1+x)
Commented by Rio Michael last updated on 29/Feb/20
thank you sir, you are right
thankyousir,youareright
Commented by peter frank last updated on 29/Feb/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *