Menu Close

write-out-the-general-summation-formula-for-the-maclaurin-series-expansion-for-1-2-cos-x-cosh-x-




Question Number 86598 by Rio Michael last updated on 29/Mar/20
 write out the general summation formula for   the maclaurin series expansion for  (1/2) (cos x + cosh x)
writeoutthegeneralsummationformulaforthemaclaurinseriesexpansionfor12(cosx+coshx)
Commented by mathmax by abdo last updated on 31/Mar/20
cosx =Σ_(n=0) ^∞  (((−1)^n )/((2n)!))x^(2n)    and ch(x)=((e^x +e^(−x) )/2)  =(1/2)(Σ_(n=0) ^∞  (x^n /(n!)) +Σ_(n=0) ^∞  (((−1)^n )/(n!))x^n )  =(1/2)Σ_(n=0) ^∞ (1/(n!)){1+(−1)^n }x^n  =Σ_(n=0) ^∞  ((x^(2n)  ⇒)/((2n)!))  (1/2)(cosx +ch(x)) =(1/2){ Σ_(n=0) ^∞   (((−1)^n )/((2n)!))x^(2n)  +Σ_(n=0) ^∞  (1/((2n)!))x^(2n) }  =(1/2)Σ_(n=0) ^∞ ((1+(−1)^n )/((2n)!))x^(2n)  =Σ_(n=0) ^∞   (x^(4n) /((4n)!))
cosx=n=0(1)n(2n)!x2nandch(x)=ex+ex2=12(n=0xnn!+n=0(1)nn!xn)=12n=01n!{1+(1)n}xn=n=0x2n(2n)!12(cosx+ch(x))=12{n=0(1)n(2n)!x2n+n=01(2n)!x2n}=12n=01+(1)n(2n)!x2n=n=0x4n(4n)!

Leave a Reply

Your email address will not be published. Required fields are marked *