Menu Close

Write-the-vector-v-1-2-3-as-a-linear-combination-of-vectors-u-1-1-1-1-u-2-1-2-3-and-u-3-2-1-1-




Question Number 118411 by bramlexs22 last updated on 17/Oct/20
Write the vector v=(1,−2,3) as a  linear combination of vectors  u_1 =(1,1,1) ,u_2 =(1,2,3) and u_3 =(2,−1,1)
Writethevectorv=(1,2,3)asalinearcombinationofvectorsu1=(1,1,1),u2=(1,2,3)andu3=(2,1,1)
Answered by benjo_mathlover last updated on 17/Oct/20
linear combination of vectors  u_1 ,u_2  and u_3  , so v = pu_1 +qu_2 +ru_3    (((    1)),((−2)),((    3)) ) =  ((p),(p),(p) ) +  (((  q)),((2q)),((3q)) ) +  (((  2r)),((−r)),((   r)) )   { ((p+q+2r = 1)),((p+2q−r = −2)),((p+3q+r = 3)) :} or  { ((p+q+2r = 1)),((      q−3r = −3)),((              5r = 10)) :}  This unique solution of the triangular  system is  { ((p = −6)),((q = 3)),((r = 2)) :}. Thus v = −6u_1 +3u_2 +2u_3
linearcombinationofvectorsu1,u2andu3,sov=pu1+qu2+ru3(123)=(ppp)+(q2q3q)+(2rrr){p+q+2r=1p+2qr=2p+3q+r=3or{p+q+2r=1q3r=35r=10Thisuniquesolutionofthetriangularsystemis{p=6q=3r=2.Thusv=6u1+3u2+2u3

Leave a Reply

Your email address will not be published. Required fields are marked *