Question Number 144663 by mathdanisur last updated on 27/Jun/21
$${x}\in\left(\mathrm{0};\pi\right)\:{and}\:\left({a};{b}\right)\:{real}\:{numbers}\:{fixed}. \\ $$$${Find}\:{the}\:{range}\:{of}\:{function}: \\ $$$${g}\left({x}\right)=\:\frac{\left(\mathrm{1}+{a}^{\mathrm{2}} +{cot}^{\mathrm{2}} {x}\right)\centerdot\left(\mathrm{1}+{b}^{\mathrm{2}} +{cot}^{\mathrm{2}} {x}\right)}{\mathrm{1}\:+\:{cot}^{\mathrm{2}} {x}} \\ $$
Answered by mindispower last updated on 27/Jun/21
$$\left({a}^{\mathrm{2}} +\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)}\right)\left(\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)}+{b}^{\mathrm{2}} \right).{sin}^{\mathrm{2}} \left({x}\right) \\ $$$$=\left({a}^{\mathrm{2}} +\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)}\right)\left(\mathrm{1}+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({x}\right)\right) \\ $$$${cauchy}\:{shwartz}\geqslant\left({a}+{b}\right)^{\mathrm{2}} \:\:{min} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 27/Jun/21
$${alot}\:{perfect},\:{but}\:{answer}? \\ $$
Commented by mindispower last updated on 27/Jun/21
$$\left[\left({a}+{b}\right)^{\mathrm{2}} ,+\infty\left[\right.\right. \\ $$
Commented by mathdanisur last updated on 27/Jun/21
$${thanks}\:{Sir} \\ $$