Menu Close

x-1-1-x-gt-e-1-e-1-Solve-for-x-x-N-2-Solve-for-x-x-gt-0-




Question Number 182575 by CrispyXYZ last updated on 11/Dec/22
((x+1))^(1/x) >(e)^(1/e)   1) Solve for x(x∈N^+ ).  2) Solve for x(x>0).
x+1x>ee1)Solveforx(xN+).2)Solveforx(x>0).
Answered by mr W last updated on 12/Dec/22
f(x)=(1+x)^(1/x)   for x>0:  f(x) is strictly decreasing.  f(x)=(1+x)^(1/x) =e^(1/e)  ⇒x_1 ≈4.7591 (solution see later)  (1+x)^(1/x) >e^(1/e)    ⇒0<x<x_1 ≈4.7591  1) x∈[1,4]  2) x∈(0,4.7591)
f(x)=(1+x)1xforx>0:f(x)isstrictlydecreasing.f(x)=(1+x)1x=e1ex14.7591(solutionseelater)(1+x)1x>e1e0<x<x14.75911)x[1,4]2)x(0,4.7591)
Commented by mr W last updated on 12/Dec/22
how to solve (x+1)^(1/x) =a with a>0  (x+1)=a^x   a(x+1)=a^(x+1) =e^((x+1)ln a)   −ln a (x+1)e^(−(x+1)ln a) =−((ln a)/a)  −ln a (x+1)=W(−((ln a)/a))  ⇒x=−((W(−((ln a)/a)))/(ln a))−1  with a=e^(1/e) ,  x=−e W(−(1/e^(1+(1/e)) ))−1    ≈−e×(−2.118666)−1=4.7591 or    ≈−e×(−0.367879)−1=−1.1992 (rejected)
howtosolve(x+1)1x=awitha>0(x+1)=axa(x+1)=ax+1=e(x+1)lnalna(x+1)e(x+1)lna=lnaalna(x+1)=W(lnaa)x=W(lnaa)lna1witha=e1e,x=eW(1e1+1e)1e×(2.118666)1=4.7591ore×(0.367879)1=1.1992(rejected)

Leave a Reply

Your email address will not be published. Required fields are marked *