Menu Close

x-1-2-find-x-1-x-2-1-




Question Number 157220 by MathSh last updated on 21/Oct/21
x = (1/2)  find  (√(x + 1 + (√(x^2  + 1)))) = ?
$$\mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{find}\:\:\sqrt{\mathrm{x}\:+\:\mathrm{1}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 21/Oct/21
x=(1/2);  (√(x + 1 + (√(x^2  + 1)))) = ?   (√(x + 1 + (√(x^2  + 1))))   (√((1/2)+1+(√(((1/2))^2 +1))))  (√((3/2)+(√((1+4)/4))))  (√((3/2)+((√5)/2))) =(√((3+(√5))/2)) =((√(3+(√5)))/( (√2)))×((√2)/( (√2)))  =((√(6+2(√5)))/2)  ▶ (√(6+2(√5))) =p+q(√5)   (Say)        ((√(6+2(√5))) =p+q(√5) )^2  ; p,q∈Q     =6+2(√5) =p^2 +2pq(√5) +5q^2      p^2 +5q^2 =6 ∧ 2pq=2      ((1/q))^2 +5q^2 =6      (1/q^2 )+5q^2 =6⇒5q^4 −6q^2 +1=0         (q−1)(q+1)(5q^2 −1_(q∉Q) )=0          q=±1⇒p=(1/q)=(1/(±1))=±1  (√(6+2(√5))) =p+q(√5) =±1±(√5)        =1+(√5) ,−1−(√5)  x=((√(6+2(√5)))/2)=((1+(√5) )/2),((−1−(√5))/2)
$$\mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}};\:\:\sqrt{\mathrm{x}\:+\:\mathrm{1}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\:=\:? \\ $$$$\:\sqrt{\mathrm{x}\:+\:\mathrm{1}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\: \\ $$$$\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}+\sqrt{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\sqrt{\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}+\mathrm{4}}{\mathrm{4}}}} \\ $$$$\sqrt{\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}\:=\sqrt{\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\:=\frac{\sqrt{\mathrm{3}+\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{2}}}×\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\frac{\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\blacktriangleright\:\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}\:={p}+{q}\sqrt{\mathrm{5}}\:\:\:\left({Say}\right) \\ $$$$\:\:\:\:\:\:\left(\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}\:={p}+{q}\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} \:;\:{p},{q}\in\mathbb{Q} \\ $$$$\:\:\:=\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\:={p}^{\mathrm{2}} +\mathrm{2}{pq}\sqrt{\mathrm{5}}\:+\mathrm{5}{q}^{\mathrm{2}} \\ $$$$\:\:\:{p}^{\mathrm{2}} +\mathrm{5}{q}^{\mathrm{2}} =\mathrm{6}\:\wedge\:\mathrm{2}{pq}=\mathrm{2} \\ $$$$\:\:\:\:\left(\frac{\mathrm{1}}{{q}}\right)^{\mathrm{2}} +\mathrm{5}{q}^{\mathrm{2}} =\mathrm{6} \\ $$$$\:\:\:\:\frac{\mathrm{1}}{{q}^{\mathrm{2}} }+\mathrm{5}{q}^{\mathrm{2}} =\mathrm{6}\Rightarrow\mathrm{5}{q}^{\mathrm{4}} −\mathrm{6}{q}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left({q}−\mathrm{1}\right)\left({q}+\mathrm{1}\right)\left(\underset{{q}\notin\mathbb{Q}} {\underbrace{\mathrm{5}{q}^{\mathrm{2}} −\mathrm{1}}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:{q}=\pm\mathrm{1}\Rightarrow{p}=\frac{\mathrm{1}}{{q}}=\frac{\mathrm{1}}{\pm\mathrm{1}}=\pm\mathrm{1} \\ $$$$\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}\:={p}+{q}\sqrt{\mathrm{5}}\:=\pm\mathrm{1}\pm\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\:=\mathrm{1}+\sqrt{\mathrm{5}}\:,−\mathrm{1}−\sqrt{\mathrm{5}} \\ $$$$\mathrm{x}=\frac{\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}\:}{\mathrm{2}},\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by MathSh last updated on 21/Oct/21
Thank you so much dear Ser
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{Ser} \\ $$
Commented by Tawa11 last updated on 21/Oct/21
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by Rasheed.Sindhi last updated on 22/Oct/21
Thanks miss for encouraging us!
$${Thanks}\:{miss}\:{for}\:{encouraging}\:{us}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *