Menu Close

x-1-2-y-1-2-27xy-x-2-1-y-2-1-10xy-




Question Number 88811 by jagoll last updated on 13/Apr/20
 { (((x+1)^2 (y+1)^2 =27xy)),(((x^2 +1)(y^2 +1) =10xy)) :}
{(x+1)2(y+1)2=27xy(x2+1)(y2+1)=10xy
Answered by john santu last updated on 13/Apr/20
let me try   ((√x)+(1/( (√x))))^2 ((√y)+(1/( (√y))))^2  = 27  (x+(1/x))(y+(1/y)) = 10  take (√x)+(1/( (√x))) = u , (√y)+(1/( (√y) )) = v  ⇒u^2 v^2  = 27  ⇒(u^2 −2)(v^2 −2) = 10  u^2 v^2 −2(u^2 +v^2 ) = 6 ⇒u^2 +v^2  = ((21)/2)  u^2 , v^2  are roots of w^2 −((21)/2)w +27 =0  we get w_1  = 6 ∧ w_2  = (9/2)  then u^2 = 6 ∧ v^2  = (9/2)  u^2 −2=4 , w^2 −2=(5/2)  (1)x+(1/x) = 4 ⇒ x = 2±(√3)  (2) x+(1/x) = (5/2)⇒x = (1/2); 2  since eqn (1) & (2) x and y symetric ,   the solution (x,y) is (2±(√3) ,2),  (2±(√3) , (1/2)) , ((1/2), 2±(√3) ) ,   (2, 2±(√3) )
letmetry(x+1x)2(y+1y)2=27(x+1x)(y+1y)=10takex+1x=u,y+1y=vu2v2=27(u22)(v22)=10u2v22(u2+v2)=6u2+v2=212u2,v2arerootsofw2212w+27=0wegetw1=6w2=92thenu2=6v2=92u22=4,w22=52(1)x+1x=4x=2±3(2)x+1x=52x=12;2sinceeqn(1)&(2)xandysymetric,thesolution(x,y)is(2±3,2),(2±3,12),(12,2±3),(2,2±3)
Commented by jagoll last updated on 13/Apr/20
waw...cooll
wawcooll

Leave a Reply

Your email address will not be published. Required fields are marked *