Menu Close

x-1-3-2-log-x-11-11-x-




Question Number 181579 by mathlove last updated on 27/Nov/22
((x)^(1/3) )^(−2+log_x 11) =11  x=?
$$\left(\sqrt[{\mathrm{3}}]{{x}}\right)^{−\mathrm{2}+{log}_{{x}} \mathrm{11}} =\mathrm{11} \\ $$$${x}=? \\ $$
Commented by Socracious last updated on 27/Nov/22
x=(1/(11))
$$\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{11}} \\ $$
Answered by Frix last updated on 27/Nov/22
x>0  x^(−(2/3)+((ln 11)/(3ln x))) =11  x^(−(2/3)) x^((ln 11)/(3ln x)) =11  x^(−(2/3)) 11^(1/3) =11  x^(−(2/3)) =11^(2/3)   x=(1/(11))
$${x}>\mathrm{0} \\ $$$${x}^{−\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{ln}\:\mathrm{11}}{\mathrm{3ln}\:{x}}} =\mathrm{11} \\ $$$${x}^{−\frac{\mathrm{2}}{\mathrm{3}}} {x}^{\frac{\mathrm{ln}\:\mathrm{11}}{\mathrm{3ln}\:{x}}} =\mathrm{11} \\ $$$${x}^{−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{11}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{11} \\ $$$${x}^{−\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{11}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{11}} \\ $$
Commented by mathlove last updated on 27/Nov/22
way  x^((ln11)/(3lnx)) =^? 11^(1/3) ?
$${way}\:\:{x}^{\frac{{ln}\mathrm{11}}{\mathrm{3}{lnx}}} \overset{?} {=}\mathrm{11}^{\frac{\mathrm{1}}{\mathrm{3}}} ? \\ $$
Commented by mathlove last updated on 27/Nov/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *