Menu Close

x-1-3-n-x-1-x-2-x-n-x-n-n-N-n-1-Find-n-1-1-n-1-x-n-




Question Number 160008 by HongKing last updated on 23/Nov/21
x_1 =3 ; n(x_1 +x_2 +...+x_n )=x_n  ; n∈N ; n≥1  Find:  Ω =Σ_(n=1) ^∞ (-1)^(n+1)  x_n
x1=3;n(x1+x2++xn)=xn;nN;n1Find:Ω=n=1(1)n+1xn
Commented by mr W last updated on 23/Nov/21
Ω=6e ?
Ω=6e?
Commented by HongKing last updated on 23/Nov/21
Yes my dear Ser but how please
YesmydearSerbuthowplease
Answered by Tokugami last updated on 23/Nov/21
n(x_1 +x_2 +...+x_n )=x_n   nΣ_(k=1) ^n x_k =x_n   nx_n +nΣ_(k=1) ^(n−1) x_k =x_n   nΣ_(k=1) ^(n−1) x_k =x_n −nx_n   (n/(1−n)) Σ_(k=1) ^(n−1) x_k =x_n   ((n+1)/(−n))Σ_(k=1) ^n x_k =x_(n+1)   Σ_(k=1) ^n x_k −Σ_(k=1) ^(n−1) x_k =((−n)/(n+1))x_(n+1) −((1−n)/n)x_n   x_n =((−n)/(n+1))x_(n+1) −((1−n)/n)x_n   (1+((1−n)/n))x_n =−(n/(n+1))x_(n+1)   (1/n)x_n =−(n/(n+1))x_(n+1)   −((n+1)/n^2 )x_n =x_(n+1)   (−((1+1)/1^2 ))x_1 =x_2   (−((2+1)/2^2 ))x_2 =(−((2+1)/2^2 ))(−((1+1)/1^2 ))x_1 =x_3   x_n =(−1)^(n−1) (((n!)/(((n−1)!)^2 )))x_1   ((n!)/((n−1)!))=n  x_n =(−1)^(n−1) (((3n)/((n−1)!)))  Ω=Σ_(n=1) ^∞ (−1)^(n+1) x_n   =Σ_(n=1) ^∞ (−1)^(n+1) (−1)^(n−1) (((3n)/((n−1)!)))  =Σ_(n=1) ^∞ (−1)^(2n) _(1) (((3n)/((n−1)!)))  =3Σ_(n=1) ^∞ (n/((n−1)!))  =6e
n(x1+x2++xn)=xnnnk=1xk=xnnxn+nn1k=1xk=xnnn1k=1xk=xnnxnn1nn1k=1xk=xnn+1nnk=1xk=xn+1nk=1xkn1k=1xk=nn+1xn+11nnxnxn=nn+1xn+11nnxn(1+1nn)xn=nn+1xn+11nxn=nn+1xn+1n+1n2xn=xn+1(1+112)x1=x2(2+122)x2=(2+122)(1+112)x1=x3xn=(1)n1(n!((n1)!)2)x1n!(n1)!=nxn=(1)n1(3n(n1)!)Ω=n=1(1)n+1xn=n=1(1)n+1(1)n1(3n(n1)!)=n=1(1)2n1(3n(n1)!)=3n=1n(n1)!=6e
Commented by HongKing last updated on 23/Nov/21
perfect my dear Ser, thank you so much
perfectmydearSer,thankyousomuch
Answered by mr W last updated on 23/Nov/21
find Σ_(n=1) ^∞ (n^2 /(n!))=?  Σ_(n=0) ^∞ (x^n /(n!))=e^x   Σ_(n=1) ^∞ (x^n /(n!))=e^x −1  Σ_(n=1) ^∞ ((nx^(n−1) )/(n!))=(d/dx)(e^x −1)=e^x   Σ_(n=1) ^∞ ((nx^n )/(n!))=xe^x   Σ_(n=1) ^∞ ((n^2 x^(n−1) )/(n!))=(d/dx)(xe^x )=(1+x)e^x   let x=1,  ⇒Σ_(n=1) ^∞ (n^2 /(n!))=2e    x_1 +x_2 +x_3 +...+x_(n−1) +x_n =(x_n /n)  x_1 +x_2 +x_3 +...+x_(n−1) =(x_(n−1) /(n−1))  ⇒x_n =(x_n /n)−(x_(n−1) /(n−1))  ⇒((x_n (n−1))/n)=−(x_(n−1) /(n−1))  ⇒(x_n /x_(n−1) )=−(n/((n−1)^2 ))  ⇒(x_(n−1) /x_(n−2) )=−((n−1)/((n−2)^2 ))  ...  ⇒(x_2 /x_1 )=−(2/1^2 )  ⇒(x_n /x_1 )=(−1)^(n−1) ((n!)/(((n−1)!)^2 ))            =(−1)^(n−1) (n/((n−1)!))=(−1)^(n−1) (n^2 /(n!))  ⇒x_n =(−1)^(n−1) ((n^2 x_1 )/(n!))  with x_1 =3,  ⇒x_n =(−1)^(n−1) ((3n^2 )/(n!))  ⇒(−1)^(n+1) x_n =(−1)^(2n) ((3n^2 )/(n!))=((3n^2 )/(n!))  Ω=Σ_(n=1) ^∞ (−1)^(n+1) x_n =3Σ_(n=1) ^∞ (n^2 /(n!))=3×2e=6e
findn=1n2n!=?n=0xnn!=exn=1xnn!=ex1n=1nxn1n!=ddx(ex1)=exn=1nxnn!=xexn=1n2xn1n!=ddx(xex)=(1+x)exletx=1,n=1n2n!=2ex1+x2+x3++xn1+xn=xnnx1+x2+x3++xn1=xn1n1xn=xnnxn1n1xn(n1)n=xn1n1xnxn1=n(n1)2xn1xn2=n1(n2)2x2x1=212xnx1=(1)n1n!((n1)!)2=(1)n1n(n1)!=(1)n1n2n!xn=(1)n1n2x1n!withx1=3,xn=(1)n13n2n!(1)n+1xn=(1)2n3n2n!=3n2n!Ω=n=1(1)n+1xn=3n=1n2n!=3×2e=6e
Commented by HongKing last updated on 23/Nov/21
perfect my dear Ser, thank you so much
perfectmydearSer,thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *