Menu Close

x-1-4-x-2-3-x-3-2-




Question Number 87093 by M±th+et£s last updated on 02/Apr/20
⌊((x−1)/4)⌋+⌊((x−2)/3)⌋=⌊((x−3)/2)⌋
$$\lfloor\frac{{x}−\mathrm{1}}{\mathrm{4}}\rfloor+\lfloor\frac{{x}−\mathrm{2}}{\mathrm{3}}\rfloor=\lfloor\frac{{x}−\mathrm{3}}{\mathrm{2}}\rfloor \\ $$
Commented by M±th+et£s last updated on 02/Apr/20
slove the equation
$${slove}\:{the}\:{equation} \\ $$
Commented by MJS last updated on 02/Apr/20
similar to qu. 86009
$$\mathrm{similar}\:\mathrm{to}\:\mathrm{qu}.\:\mathrm{86009} \\ $$
Commented by M±th+et£s last updated on 02/Apr/20
yes sir thank you
$${yes}\:{sir}\:{thank}\:{you} \\ $$
Commented by MJS last updated on 02/Apr/20
I get for x∈Z  x∈{−10, −7, −6, −4, −3, −2, −1, 0, 1, 3, 4, 7}  for x∈R these intervals:  [−10, −9[  [−7, −5[  [−4, 2[  [3, 4[  [7, 8[
$$\mathrm{I}\:\mathrm{get}\:\mathrm{for}\:{x}\in\mathbb{Z} \\ $$$${x}\in\left\{−\mathrm{10},\:−\mathrm{7},\:−\mathrm{6},\:−\mathrm{4},\:−\mathrm{3},\:−\mathrm{2},\:−\mathrm{1},\:\mathrm{0},\:\mathrm{1},\:\mathrm{3},\:\mathrm{4},\:\mathrm{7}\right\} \\ $$$$\mathrm{for}\:{x}\in\mathbb{R}\:\mathrm{these}\:\mathrm{intervals}: \\ $$$$\left[−\mathrm{10},\:−\mathrm{9}\left[\right.\right. \\ $$$$\left[−\mathrm{7},\:−\mathrm{5}\left[\right.\right. \\ $$$$\left[−\mathrm{4},\:\mathrm{2}\left[\right.\right. \\ $$$$\left[\mathrm{3},\:\mathrm{4}\left[\right.\right. \\ $$$$\left[\mathrm{7},\:\mathrm{8}\left[\right.\right. \\ $$
Commented by M±th+et£s last updated on 02/Apr/20
god bless you sir
$${god}\:{bless}\:{you}\:{sir} \\ $$
Commented by M±th+et£s last updated on 02/Apr/20
 can you show your work sir
$$\:{can}\:{you}\:{show}\:{your}\:{work}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *