Question Number 166723 by cortano1 last updated on 26/Feb/22
$$\:\:\:\int\:\frac{\sqrt[{\mathrm{5}}]{\mathrm{x}}\:−\mathrm{1}}{\:\sqrt{\mathrm{x}}\:+\:\mathrm{1}}\:\mathrm{dx}=? \\ $$
Answered by MJS_new last updated on 26/Feb/22
$$\int\frac{{x}^{\mathrm{1}/\mathrm{5}} −\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}^{\mathrm{1}/\mathrm{10}} \:\rightarrow\:{dx}=\mathrm{10}{t}^{\mathrm{9}} {dt}\right] \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{5}} +\mathrm{1}}{dt}=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{\left({t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}\right)}{dt}= \\ $$$$={I}_{\mathrm{1}} +{I}_{\mathrm{2}} +{I}_{\mathrm{3}} +{I}_{\mathrm{4}} +{I}_{\mathrm{5}} \\ $$$$\mathrm{with} \\ $$$${I}_{\mathrm{1}} =\mathrm{10}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} −{t}\right){dt}=\frac{\mathrm{10}}{\mathrm{7}}{t}^{\mathrm{7}} −\mathrm{2}{t}^{\mathrm{5}} −\mathrm{5}{t}^{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} =\int\frac{\left(\mathrm{5}−\sqrt{\mathrm{5}}\right){t}−\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}{dt}=\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}\right) \\ $$$${I}_{\mathrm{3}} =\int\frac{\left(\mathrm{5}+\sqrt{\mathrm{5}}\right){t}+\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}{dt}=\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}\right) \\ $$$${I}_{\mathrm{4}} =\sqrt{\mathrm{5}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}=\sqrt{\mathrm{2}\left(\mathrm{5}+\sqrt{\mathrm{5}}\right)}\mathrm{arctan}\:\frac{\sqrt{\mathrm{10}\left(\mathrm{5}+\sqrt{\mathrm{5}}\right)}\left({t}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\right)}{\mathrm{5}} \\ $$$${I}_{\mathrm{5}} =−\sqrt{\mathrm{5}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}=−\sqrt{\mathrm{2}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)}\mathrm{arctan}\:\frac{\sqrt{\mathrm{10}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)}\left({t}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{4}}\right)}{\mathrm{5}} \\ $$$$… \\ $$