Menu Close

x-1-and-x-2-is-root-log-2-x-1-2-log-x-2-the-value-is-x-1-x-2-a-2-1-4-b-2-1-2-c-4-1-4-d-4-1-2-e-6-1-4-




Question Number 154989 by bagjagugum123 last updated on 24/Sep/21
x_1  and x_2  is root log_2 x^((1+^2 log x)) =2, the value  is x_1 +x_2 = ...  a. 2(1/4)  b. 2(1/2)  c. 4(1/4)  d. 4(1/2)  e. 6(1/4)
x1andx2isrootlog2x(1+2logx)=2,thevalueisx1+x2=a.214b.212c.414d.412e.614
Answered by john_santu last updated on 24/Sep/21
⇔ (log _2 x+1)log _2 x = 2  let y=log _2 x  ⇒y^2 +y−2=0  ⇒(y+2)(y−1)=0   { ((y=−2⇒x_1 =(1/4))),((y=1⇒x_2 =2)) :} ⇒x_1 +x_2 =(9/4)
(log2x+1)log2x=2lety=log2xy2+y2=0(y+2)(y1)=0{y=2x1=14y=1x2=2x1+x2=94
Commented by bagjagugum123 last updated on 24/Sep/21
thank you very much Sir
thankyouverymuchSir
Answered by puissant last updated on 24/Sep/21
⇒ (1+log_2 x)log_2 x=2  t=log_2 x → t^2 +t−2=0  ⇒ t_1 =−2  ;  t_2 =1  ((lnx_1 )/(ln2))=−2 ⇒ lnx=−2ln2 ⇒ x=(1/4)  ((lnx_2 )/(ln2))=1⇒ lnx_2 =ln2 ⇒ x_2 =2  ∴∵   x_1 +x_2 =(1/4)+(8/4)=(9/4)..
(1+log2x)log2x=2t=log2xt2+t2=0t1=2;t2=1lnx1ln2=2lnx=2ln2x=14lnx2ln2=1lnx2=ln2x2=2∴∵x1+x2=14+84=94..

Leave a Reply

Your email address will not be published. Required fields are marked *