Menu Close

x-1-csc-x-dx-




Question Number 174628 by cortano1 last updated on 06/Aug/22
   Ω = ∫ (x/(1+csc x)) dx =?
Ω=x1+cscxdx=?
Commented by infinityaction last updated on 06/Aug/22
∫(x/(1+cscx))dx=∫((xsinx)/(1+sinx))dx  =∫x((1+sinx−1)/(1+sinx))dx=∫(x−(x/(1+sinx)))dx  Ω = (x^2 /2)−∫(x/(1+sinx_(I)  ))   I = ∫(x/(1+sinx ))   ⇒ I  =  ∫(x/(1+cos((π/2) −x)))  I  =∫(x/(2cos^2 ((π/4) −(x/2))))  (π/4)−(x/2)  = y ⇒ (dx/2)  = −dy  I = −∫((((π/2)−2y)dy)/(cos^2 y ))  I  =  2∫ysec^2 y dy −(π/2)∫sec^2 y dy  I = 2ytany −log ∣siny∣ −(π/2)tany +C  Ω =  (x^2 /2)+log∣siny∣ +(π/2)tany −2ytany+C     here   y  =  (π/4)−(x/2)
x1+cscxdx=xsinx1+sinxdx=x1+sinx11+sinxdx=(xx1+sinx)dxΩ=x22x1+sinxII=x1+sinxI=x1+cos(π2x)I=x2cos2(π4x2)π4x2=ydx2=dyI=(π22y)dycos2yI=2ysec2ydyπ2sec2ydyI=2ytanylogsinyπ2tany+CΩ=x22+logsiny+π2tany2ytany+Cherey=π4x2
Commented by Tawa11 last updated on 09/Aug/22
Great sir
Greatsir
Answered by aleks041103 last updated on 06/Aug/22
∫(x/(1+cscx))dx=∫((xsinx)/(1+sinx))dx=  =∫x((1+sinx−1)/(1+sinx))dx=∫(x−(x/(1+sinx)))dx=  =(x^2 /2)−∫((xdx)/(1+sinx))=(x^2 /2)+I  z=tan(x/2)⇒x=2arctan(z)⇒dx=((2dz)/(1+z^2 ))  sin(x)=2sin(x/2)cos(x/2)=  =2tan(x/2)cos^2 (x/2)=  =((2tan(x/2))/(1+tan^2 (x/2)))=((2z)/(1+z^2 ))  ⇒(1/(1+sinx))=((1+z^2 )/((1+z)^2 ))  ⇒I=4∫arctan(z)(−(dz/((1+z)^2 )))=  =4∫arctan(z)d((1/(1+z)))=  =((4arctan(z))/(1+z))−4∫(dz/((1+z)(1+z^2 )))=  =((2x)/(1+tan(x/2)))+2∫((−2dz)/((1+z)(1+z^2 )))  ((−2)/((1+z)(1+z^2 )))=(a/(1+z))+((bz+c)/(1+z^2 ))  ⇒a+az^2 +bz+c+bz^2 +cz=−2  a+c=−2, b+c=0, a+b=0⇒−a=−c=b=1  ⇒∫((−2dz)/((1+z)(1+z^2 )))=∫(((z−1)/(1+z^2 ))−(1/(1+z)))dz=  =∫((zdz)/(1+z^2 ))−∫(dz/(1+z^2 ))−∫(dz/(1+z))=  =(1/2)∫((d(1+z^2 ))/(1+z^2 ))−arctan(z)−ln(1+z)=  =(1/2)ln(1+z^2 )−ln(1+z)−arctan(z)+C=  =(1/2)ln(((1+z^2 )/((1+z)^2 )))−arctan(z)+C=  =−(1/2)ln(1+sinx)−(1/2)x+C  ⇒I=((2x)/(1+tan(x/2)))−x−ln(1+sinx)+C  ⇒∫(x/(1+cscx))dx=(x^2 /2)+((2x)/(1+tan(x/2)))−x−ln(1+sinx)+C
x1+cscxdx=xsinx1+sinxdx==x1+sinx11+sinxdx=(xx1+sinx)dx==x22xdx1+sinx=x22+Iz=tan(x/2)x=2arctan(z)dx=2dz1+z2sin(x)=2sin(x/2)cos(x/2)==2tan(x/2)cos2(x/2)==2tan(x/2)1+tan2(x/2)=2z1+z211+sinx=1+z2(1+z)2I=4arctan(z)(dz(1+z)2)==4arctan(z)d(11+z)==4arctan(z)1+z4dz(1+z)(1+z2)==2x1+tan(x/2)+22dz(1+z)(1+z2)2(1+z)(1+z2)=a1+z+bz+c1+z2a+az2+bz+c+bz2+cz=2a+c=2,b+c=0,a+b=0a=c=b=12dz(1+z)(1+z2)=(z11+z211+z)dz==zdz1+z2dz1+z2dz1+z==12d(1+z2)1+z2arctan(z)ln(1+z)==12ln(1+z2)ln(1+z)arctan(z)+C==12ln(1+z2(1+z)2)arctan(z)+C==12ln(1+sinx)12x+CI=2x1+tan(x/2)xln(1+sinx)+Cx1+cscxdx=x22+2x1+tan(x/2)xln(1+sinx)+C
Commented by Tawa11 last updated on 09/Aug/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *