Menu Close

x-1-log-3-9-3-x-3-1-




Question Number 159639 by bobhans last updated on 19/Nov/21
          ((x−1)/(log _3 (9−3^x )−3)) ≤ 1
$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}−\mathrm{3}^{\mathrm{x}} \right)−\mathrm{3}}\:\leqslant\:\mathrm{1}\: \\ $$
Answered by tounghoungko last updated on 19/Nov/21
   ((x−1)/(log _3 (9−3^x )−log _3 (27))) ≤ 1 ; 9−3^x >0 ; x<2   ((x−1)/(log _3 (((9−3^x )/(27))))) ≤ 1     (x−1)log _((((9−3^x )/(27)))) (3) ≤ 1    log _((((9−3^x )/(27)))) (3^(x−1) ) ≤ 1    as x<2 , 0 < ((9−3^x )/(27)) < 1   3^(x−1 ) ≥ ((9−3^x )/(27))    9.3^x  ≥ 9−3^x  ; 10.3^x  ≥ 9   x ≥ log _3 ((9/(10)))    then x∈ [ log _3 ((9/(10))) , 2 )
$$\:\:\:\frac{{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}−\mathrm{3}^{{x}} \right)−\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{27}\right)}\:\leqslant\:\mathrm{1}\:;\:\mathrm{9}−\mathrm{3}^{{x}} >\mathrm{0}\:;\:{x}<\mathrm{2} \\ $$$$\:\frac{{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{9}−\mathrm{3}^{{x}} }{\mathrm{27}}\right)}\:\leqslant\:\mathrm{1}\: \\ $$$$\:\:\left({x}−\mathrm{1}\right)\mathrm{log}\:_{\left(\frac{\mathrm{9}−\mathrm{3}^{{x}} }{\mathrm{27}}\right)} \left(\mathrm{3}\right)\:\leqslant\:\mathrm{1} \\ $$$$\:\:\mathrm{log}\:_{\left(\frac{\mathrm{9}−\mathrm{3}^{{x}} }{\mathrm{27}}\right)} \left(\mathrm{3}^{{x}−\mathrm{1}} \right)\:\leqslant\:\mathrm{1} \\ $$$$\:\:{as}\:{x}<\mathrm{2}\:,\:\mathrm{0}\:<\:\frac{\mathrm{9}−\mathrm{3}^{{x}} }{\mathrm{27}}\:<\:\mathrm{1} \\ $$$$\:\mathrm{3}^{{x}−\mathrm{1}\:} \geqslant\:\frac{\mathrm{9}−\mathrm{3}^{{x}} }{\mathrm{27}} \\ $$$$\:\:\mathrm{9}.\mathrm{3}^{{x}} \:\geqslant\:\mathrm{9}−\mathrm{3}^{{x}} \:;\:\mathrm{10}.\mathrm{3}^{{x}} \:\geqslant\:\mathrm{9} \\ $$$$\:{x}\:\geqslant\:\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{9}}{\mathrm{10}}\right)\: \\ $$$$\:{then}\:{x}\in\:\left[\:\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{9}}{\mathrm{10}}\right)\:,\:\mathrm{2}\:\right)\: \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *