Menu Close

x-1-lt-x-2-2x-2-solve-for-x-




Question Number 122322 by EngLewis last updated on 15/Nov/20
∣x+1∣<∣x^2 +2x+2∣  solve for x
x+1∣<∣x2+2x+2solveforx
Answered by mathmax by abdo last updated on 15/Nov/20
we have x^2  +2x+2 =(x+1)^2  +1>0 ⇒∣x^2  +2x+2∣=x^2  +2x+2  e⇒∣x+1∣−x^2 −2x−2<0 let f(x)=∣x+1∣−x^2 −2x−2  x             −∞                        −1                         +∞  ∣x+1∣                  −x−1         0        x+1  f(x)               −x^2 −3x−3          −x^2 −x−1   ⇒ f(x)= { ((−x^2 −3x−3  ,x≤−1)),((−x^2 −x−1 ,x≥−1)) :}  case1  x≤−1   f(x)<0 ⇒−x^2 −3x−3<0 ⇒x^2  +3x+3>0  Δ=9−12 =−3 ⇒this polynom is slways >0 ⇒S_1 =]−∞ ,−1]  case2  x≥1  f(x)<0 ⇒−x^2 −x−1<0 ⇒x^2  +x+1>0  this polynom is also >0 ⇒S_2 =[−1,+∞[  so  S =∪ S_i =R
wehavex2+2x+2=(x+1)2+1>0⇒∣x2+2x+2∣=x2+2x+2e⇒∣x+1x22x2<0letf(x)=∣x+1x22x2x1+x+1x10x+1f(x)x23x3x2x1f(x)={x23x3,x1x2x1,x1case1x1f(x)<0x23x3<0x2+3x+3>0Δ=912=3thispolynomisslways>0S1=],1]case2x1f(x)<0x2x1<0x2+x+1>0thispolynomisalso>0S2=[1,+[soS=Si=R
Answered by MJS_new last updated on 15/Nov/20
∣x+1∣<∣(x+1)^2 +1∣  ∣x+1∣<(x+1)^2 +1  t=x+1  ∣t∣<t^2 +1  (1) t<0 ⇒ −t<t^2 +1 ⇔ t^2 +t+1>0 always true  (2) t>0 ⇒ t<t^2 +1 ⇔ t^2 −t+1>0 always true  ⇒  solution is x∈R
x+1∣<∣(x+1)2+1x+1∣<(x+1)2+1t=x+1t∣<t2+1(1)t<0t<t2+1t2+t+1>0alwaystrue(2)t>0t<t2+1t2t+1>0alwaystruesolutionisxR
Answered by mathmax by abdo last updated on 15/Nov/20
another way but eazy  (x^2  +2x+2)^2 −(x+1)^2  =(x^2  +2x+2−x−1)(x^2  +2x+2+x+1)  =(x^2  +x+1)( x^2  +3x+3)   but  x^2  +x+1>0 ∀x due yo Δ<0  x^2  +3x+3 >0 ∀x  due to Δ<0 ⇒ ∀x ∈R  (x+1)^2  <(x^2  +2x+2)^2  ⇒  ∣x+1∣<x^2  +2x+2
anotherwaybuteazy(x2+2x+2)2(x+1)2=(x2+2x+2x1)(x2+2x+2+x+1)=(x2+x+1)(x2+3x+3)butx2+x+1>0xdueyoΔ<0x2+3x+3>0xduetoΔ<0xR(x+1)2<(x2+2x+2)2x+1∣<x2+2x+2
Answered by TANMAY PANACEA last updated on 16/Nov/20
x^2 +2x+2  (x+1)^2 +1  (x+1)^2  always positive  so (x+1)^2 +1 always greater than (x+1)
x2+2x+2(x+1)2+1(x+1)2alwayspositiveso(x+1)2+1alwaysgreaterthan(x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *